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While atomistic simulations have provided great insight into the basic mechanisms of pro-

cesses like plasticity, diffusion and phase transformations in solids, there is an important

limitation to these methods. Specifically, the large number of atoms in any realistic macro-

scopic structure is typically much too large for direct simulation. Consider that the current

benchmark for large-scale fully atomistic simulations is on the order of 109 atoms, using

massively-paralleled computer facilities with hundreds or thousands of CPUs. This repre-

sents 1/10,000 of the number of atoms in a typical grain of aluminum, and 1/1,000,000 of the

atoms in a typical micro-electro-mechanical systems (MEMS) device. Further, it is apparent

that with such a large number of atoms, substantial regions of a problem of interest are es-

sentially behaving like a continuum. Clearly, while fully atomistic calculations are essential

to our understanding of the basic “unit” mechanisms of deformation, they will never replace

continuum models altogether.

The goal for many researchers, then, has been to develop techniques that retain a largely

continuum mechanics framework, but impart on that framework enough atomistic informa-

tion to be relevant to modeling a problem of interest. In many examples, this means that

a certain, relatively small, fraction of a problem require full atomistic detail while the rest

can be modeled using the assumptions of continuum mechanics.

The quasicontinuum method (QC) has been developed as a framework for such mixed atom-

istic/continuum modeling. The QC philosophy is to consider the atomistic description as

the “exact” model of material behaviour, but at the same time acknowledge that the sheer

number of atoms make most problems intractable in a fully atomistic framework. Then,

the QC uses continuum assumptions to reduce the degrees of freedom and computational

demand without losing atomistic detail in regions where it is required.

The purpose of this article is to provide an overview of the theoretical underpinnings of the

QC method, and to shed light on practical issues involved in its implementation. The focus of

the article will be on the specific implementation of the QC method as put forward in Tadmor

et al. (1996a,b); Shenoy et al. (1998b,a). Variations on this implementation, enhancements,

and details of specific applications will not be presented. For the interested reader, these

additional topics can be found in several QC review articles (Miller and Tadmor, 2003; Ortiz

et al., 2001; Ortiz and Phillips, 1999; Rodney, 2003) and of course in the original references.

The most recent of the QC reviews (Miller and Tadmor, 2003) provides an extensive literature

survey, detailing many different implementations, extensions and applications of the QC. Also
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included in that review are several other coupled methods that are either direct descendants

of the QC or are similar alternatives developed independently. For a detailed comparison

between several coupled atomistic/continuum methods including the QC, the reader may

find the review by Curtin and Miller (2003) of interest.

A QC website designed to serve as a clearinghouse for information on the QC method has

been established at www.qcmethod.com. The site includes information on QC research, links

to researchers, downloadable QC code and documentation. The downloadable code is freely

available and corresponds to the QC implementation discussed in this paper.

Atomistic Modeling of Crystalline Solids

In the QC, the point-of-view which is adopted is that there is an underlying atomistic model

of the material which is the “correct” description of the material behaviour. This could, in

principle, be a quantum-mechanically based description such as density functional theory

(DFT), but in practice the focus has been primarily on atomistic models based on semi-

empirical interatomic potentials. A review of such methods can be found, for example, in

Carlsson (1990). Here, we present only the features of such models which are essential for our

discussion. We focus on lattice statics solutions, i.e. we are looking for equilibrium atomic

configurations for a given model geometry and externally imposed forces or displacements,

because most applications of the QC have used a static implementation. Recent work to

extend QC to finite temperature and dynamic simulations shows promise, and can be found

in Shenoy et al. (1999).

We assume that there is some reference configuration of N atomic nuclei, confined to a

lattice. Thus, the reference position of the ith atom in the model X i is found from an

integer combination of lattice vectors and a reference (origin) atom position, X 0

X i = X0 + liA1 + miA2 + niA3, (1)

where (li, mi, ni) are integers, Aj is the jth Bravais lattice vector1.

The deformed position of the ith atom xi, is then found from a unique displacement vector

ui for each atom,

xi = X i + ui. (2)

The displacements ui, while only having physical meaning on the atomic sites, can be treated

as a continuous field u(X) throughout the body with the property that u(X i) ≡ ui. This

approach, while not the conventional one in atomistic models, is useful in effecting the

connection to continuum mechanics. Note that for brevity we will often refer to the field u

1We omit a discussion of complex lattices with more than one atom at each Bravais lattice site. This
topic is discussed in Tadmor et al. (1999); Miller and Tadmor (2003).

2



to represent the set of all atomic displacements {u1, u2, . . .uN} where N is the number of

atoms in the body.

In standard lattice statics approaches using semi-empirical potentials, there is a well defined

total energy function Etot that is determined from the relative positions of all the atoms in

the problem. In many semi-empirical models, this energy can be written as a sum over the

energy of each individual atom. Specifically,

Etot =
N

∑

i=1

Ei(u), (3)

where Ei is the site energy of atom i, which depends on the displacements u through the

relative positions of all the atoms in the deformed configuration. For example, within the

Embedded Atom Method (EAM) (Daw and Baskes, 1984; Norskøv and Lang, 1980) atomistic

model, this site energy is given by

Ei = Ui(ρ̄i) +
1

2

∑

j 6=i

Vij(rij), (4)

where Ui can be interpreted as an electron-density dependent embedding energy, Vij is a

pair potential between atom i and its neighbor j and rij =
√

(xi − xj) · (xi − xj) is the

interatomic distance. The electron density at the position of atom i, ρ̄i, is the superposition

of spherically-averaged density contributions from each of the neighbors, ρj:

ρ̄i =
∑

j 6=i

ρj(rij). (5)

A similar site energy can be identified for other empirical atomistic models, such as those of

the Stillinger-Weber type (Stillinger and Weber, 1985), for instance.

In addition to the potential energy of the atoms, there may be energy due to external loads

applied to atoms. Thus, the total potential energy of the system (atoms plus external loads)

can be written as

Φ(u) = Etot(u) −

N
∑

i=1

f iui, (6)

where −f iui is the potential energy of the applied load f i on atom i. In lattice statics, we

seek the displacements u such that this potential energy is minimized.

The QC Method

The goal of the static QC method is to find the atomic displacements that minimize eqn. (6)

by approximating the total energy of eqn. (3) such that:
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1. the number of degrees of freedom is substantially reduced from 3N , but the full atom-

istic description is retained in certain “critical” regions,

2. the computation of the energy in eqn. (3) is accurately approximated without the need

to explicitly compute the site energy of all the atoms,

3. the fully atomistic, critical regions can evolve with the deformation, during the simu-

lation.

In this section, the details of how the QC achieves each of these goals are presented.

Removing degrees of freedom. A key measure of a displacement field is the deformation

gradient F . A body deforms from reference state X to deformed state x = X +u(X), from

which we define

F (X) ≡
∂x

∂X
= I +

∂u

∂X
, (7)

where I is the identity tensor. If the deformation gradient changes gradually on the atomic

scale, then it is not necessary to explicitly track the displacement of every atom in the

region. Instead, the displacements of a small fraction of the atoms (called representative

atoms or “repatoms”) can be treated explicitly, with the displacements of the remaining

atoms approximately found through interpolation. In this way, the degrees of freedom are

reduced to only the coordinates of the repatoms.

The QC incorporates such a scheme by recourse to the interpolation functions of the finite

element method (FEM) (see, for example, Zienkiewicz (1991)). Figure 1 illustrates the

approach in two-dimensions in the vicinity of a dislocation core. The filled atoms are the

selected repatoms, which are meshed by a space-filling set of linear triangular finite elements.

Any atom not chosen as a repatom, like the one labeled “A”, is subsequently constrained

to move according to the interpolated displacements of the element in which is resides. The

density of repatoms is chosen to vary in space according to the needs of the problem of

interest. In regions where full atomistic detail is required, all atoms are chosen as repatoms,

with correspondingly fewer in regions of more slowly varying deformation gradient. This

is illustrated in Figure 1, where all the atoms around the dislocation core are chosen as

repatoms. Further away, where the crystal experiences only the linear elastic strains due to

the dislocation, the density of repatoms is reduced.

This first approximation of the QC, then, is to replace the energy E tot by Etot,h:

Etot,h =
N

∑

i=1

Ei(u
h). (8)

In this equation the atomic displacements are now found through the interpolation functions
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and take the form

uh =

Nrep
∑

α=1

Sαuα, (9)

where Sα is the interpolation (shape) function associated with repatom α, and Nrep is the

number of repatoms, Nrep � N . Note that the formal summation over the shape functions

in eqn. (9) is in practice much simpler due to the compact support of the finite element shape

functions. Specifically, shape functions are identically zero in every element not immediately

adjacent to a specific repatom. Referring back to Figure 1, this means that the displacement

of atom A is determined entirely from the sum over the three repatoms B, C and D defining

the element containing A:

uh(XA) = SB(XA)uB + SC(XA)uC + SD(XA)uD. (10)

Introducing this kinematic constraint on most of the atoms in the body will achieve the

goal of reducing the number of degrees of freedom in the problem, but notice that for the

purpose of energy minimization we must still compute the energy and forces on the degrees

of freedom by explicitly visiting every atom – not just the repatoms – and building its

neighbor environment from the interpolated displacement fields. Next, we discuss how these

calculations are approximated and made computationally tractable.

Efficient energy calculations: The local QC. In addition to the degree of freedom

reduction described in the previous section, the QC requires an efficient means of computing

the energy and forces without the need to visit every atom in the problem as implied by

eqn. (8). The first way to accomplish this is by recourse to the so-called Cauchy-Born (CB)

rule (see Ericksen (1984) and references therein), resulting in what is referred to as the local

formulation of the QC.2

The use of linear shape functions to interpolate the displacement field means that within

each element, the deformation gradient will be uniform. The Cauchy-Born rule assumes

that a uniform deformation gradient at the macro-scale can be mapped directly to the

same uniform deformation on the micro-scale. For crystalline solids with a simple lattice

structure3, this means that every atom in a region subject to a uniform deformation gradient

will be energetically equivalent. Thus, the energy within an element can be estimated by

computing the energy of one atom in the deformed state and multiplying by the number

of atoms in the element. In practice, the calculation of the CB energy is done separately

2The term “local” refers to the fact that use of the CB rule implies that the energy at each point in the
continuum will only be a function of the deformation at that point and not on its surroundings.

3A simple lattice structure is one for which there is only one atom at each Bravais lattice site. In a complex
lattice with two or more atoms per site, the Cauchy-Born rule must be generalized to permit shuffling of the
off-site atoms. See Tadmor et al. (1999).
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from the model in a “black box”, where for a given deformation gradient F , a unit cell with

periodic boundary conditions is deformed appropriately and its energy is computed. The

strain energy density in the element is then given by

E(F ) =
E0(F )

Ω0

, (11)

where Ω0 is the unit cell volume (in the reference configuration) and E0 is the energy of the

unit cell when its lattice vectors are distorted according to F . Now the total energy of an

element is simply this energy density times the element volume, and the total energy of the

problem is simply the sum of element energies:

Etot,h ≈ Etot,h′

=

Nelement
∑

e=1

ΩeE(F e), (12)

where Ωe is the volume of element e. The important computational saving made here is

that a sum over all the atoms in the body has been replaced by a sum over all the elements,

each one requiring an explicit energy calculation for only one atom. Since the number of

elements is typically several orders of magnitude smaller than the total number of atoms,

the computational savings is substantial. The number of elements scales linearly with the

number of repatoms, and so the local QC scales as O(Nrep).

Note, however, that even in the case where the deformation is uniform within each element,

the local prescription for the energy in the element is only approximate. This is because

in the constrained displacement field uh, the deformation gradient varies from one element

to the next. At element boundaries and free surfaces, atoms can have energies that differ

significantly from that of an atom in a bulk, uniformly deformed lattice. Figure 2 illustrates

this schematically for an initially square lattice deformed according to two different defor-

mation gradients in two neighboring regions. The energy of the atom labeled as a “bulk

atom” can be accurately computed from the CB rule; its neighbor environment is uniform

even though some of its neighbors occupy other elements. However, the “interface atom”

and “surface atom” are not accurately described by the CB rule, which assumes that these

atoms see uniformly deformed bulk environments.

In situations where the deformation is varying slowly from one element to the next and where

surface energetics are not important, the local approximation is a good one. Using the CB

rule as in eqn. (11), the QC can be thought of as a purely continuum formulation, but with

a constitutive law that is based on atomistics rather than on an assumed phenomenological

form. The CB constitutive law automatically ensures that the correct anisotropic crystal

elasticity response will be recovered for small deformations. It is non-linear elastic (as dic-

tated by the underlying atomistic potentials) for intermediate strains and includes lattice

invariance for large deformations; for example, a shear deformation that corresponds to the
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twinning of the lattice will lead to a rotated crystal structure with zero strain energy density.

An advantage of the local QC formulation is that it allows the use of quantum-mechanical

atomistic models that cannot be written as a sum over individual atom energies such as

tight binding (TB) and DFT. In these models only the total energy of a collection of atoms

can be obtained. However, for a lattice undergoing a uniform deformation it is possible to

compute the energy density E(F ) from a single unit cell with periodic boundary conditions.

Incorporation of quantum-mechanical information into the atomic model generally ensures

that the description is more transferable, i.e., it provides a better description of the energy

of atomic configurations away from the reference structure to which empirical potentials are

fitted. This allows truly first-principles simulations of some macroscopic processes such as

homogeneous phase transformations.

More accurate calculations: Mixed local/nonlocal QC. The local QC formulation

successfully enhances the continuum FEM framework with atomistic properties such as non-

linearity, crystal symmetry and lattice invariance. The latter property means that disloca-

tions may exist in the local QC. However, the core structure and energy of these dislocations

will only be coarsely represented due to the CB approximation of the energy. The same is

true for other defects such as surfaces and interfaces, where the deformation of the crystal

is non-uniform over distances shorter than the cut-off radius of the interatomic potentials.

For example, to correctly account for the energy of the interface shown in Figure 2, the non-

uniform environment of the atoms along the interface must be correctly accounted for. While

the local QC can support deformations (such as twinning) which may lead to microstructures

containing such interfaces, it will not account for the energy cost of the interface itself.

In order to correctly capture these details, the QC must be made nonlocal in certain regions.

The energy of eqn. (8), which in the local QC was approximated by eqn. (12), must instead

be approximated in a way that is sensitive to non-uniform deformation and free surfaces,

especially in the limit where full atomistic detail is required.

We now make the ansatz that the energy of eqn. (8) can be approximated by computing

only the energy of the repatoms, but we will identify each repatom as being either local or

nonlocal depending on its deformation environment. Thus, the repatoms are divided into

Nloc local repatoms and Nnl nonlocal repatoms (Nloc + Nnl = Nrep). The energy expression

is then approximated as

Etot,h ≈

Nnl
∑

α=1

nαEα(uh) +

Nloc
∑

α=1

nαEα(uh). (13)

The important difference between eqn. (8) and eqn. (13) is that the sum on all the atoms

in the problem has been replaced with a sum on only the repatoms. The function nα is a
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weight assigned to repatom α, which will be high for repatoms in regions of low repatom

density and vice versa. For consistency, the weight functions must be chosen so that

Nrep
∑

α=1

nα = N, (14)

which further implies (through the consideration of a special case where every atom in a

problem is made a repatom) that in atomically-refined regions, all nα = 1. From eqn. (14),

the weight functions can be physically interpreted as the number of atoms represented by

each repatom α.

The weight nα for each repatom (local or nonlocal) is determined from a tessellation that

divides the body into cells around each repatom. One physically sensible tessellation is

Voronoi cells (Okabe, 1992), but an approximate Voronoi diagram can be used instead due

to the high computational overhead of the Voronoi construction. In practice, the coupled

QC formulation makes use of a simple tessellation based on the existing finite element mesh,

partitioning each element equally between each of its nodes. The volume of the tessellation

cell for a given repatom, divided by the volume of a single atom (the Wigner-Seitz volume)

provides nα for the repatom. In typical QC simulations, nonlocal regions are fully refined

down to the atomic scale, and so the weight of the nonlocal repatoms is one.

To compute the energy of a local repatom α, we recognize that of the nα atoms it represents,

ne
α reside in each element e adjacent to the repatom. The weighted energy contribution of

the repatom is then found by applying the CB rule within each element adjacent to α such

that

Eα =
M

∑

e=1

ne
α

nα

Ω0E(F e), nα =
M

∑

e=1

ne
α, (15)

where E(F e) is the energy density in element e by the CB rule, Ω0 is the Wigner-Seitz volume

of a single atom and e runs over all elements adjacent to α.

Note that this description of the local repatoms is exactly equivalent to the element-by-

element summation of the local QC in eqn. (12); it is only the way that the energy partitioning

is written that is different. In a mesh containing only local repatoms, the two formulations

are the same, but the summations have been rearranged from one over elements in eqn. (12)

to one over the repatoms here.

The energy of each nonlocal repatom is computed from the deformed neighbor environment

dictated from the current interpolated displacements in the elements. In essence, every atom

in the vicinity of a nonlocal repatom is displaced to the deformed configuration, the energy

of each nonlocal repatom in this configuration is computed from eqn. (4), and the total

energy is the sum of these repatom energies weighted by nα. For example, the energy of the

repatom identified as an “interface atom” in Figure 2 requires that the neighbor environment
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be generated by displacing each neighbor according to the element in which it resides. Thus,

the energy of each nonlocal repatom is exactly as it should be under the displacement field

uh, while the local approximation is used in regions where the deformation is uniform on

the atomic scale. From this starting point, the forces on all the repatoms can be obtained

as the appropriate derivatives of eqn. (13), and energy minimization can proceed.

When making use of the mixed formulation described in eqn. (13), it now becomes necessary

to decide whether a given repatom should be local or nonlocal. This is achieved automatically

in the QC using a nonlocality criterion. Note that simply having a large deformation in a

region does not in itself require a nonlocal repatom, as the CB rule of the local formulation

will exactly describe the energy of any uniform deformation, regardless of the severity. The

key feature that should trigger a nonlocal treatment of a repatom is a significant variation

in the deformation gradient on the atomic scale in the repatom’s proximity. Thus, the

nonlocality criterion in implemented as follows. A cutoff, rnl, is empirically chosen to be

between two and three times the cutoff radius of the interatomic potentials. The deformation

gradients in every element within this cutoff of a given representative atom are compared,

by looking at the differences between their eigenvalues. The criterion is then:

max
a,b;k

|λa
k − λb

k| < ε, (16)

where λa
k is the kth eigenvalue of the right stretch tensor U a =

√

F T
a F a in element a,

k = 1...3, and the indices a and b run over all elements within rnl of a given repatom. The

repatom will be made local if this inequality is satisfied, and non-local otherwise. In practice,

the tolerance ε is determined empirically. A value of 0.1 has been used in a number of tests

and found to give good results. In practice, the effect of this criterion is clusters of nonlocal

atoms in regions of rapidly varying deformation.

The fact that the nonlocal repatoms tend to cluster into atomistically refined regions sur-

rounded by local regions leads to nonlocal/local interfaces in the QC. As in all attempts to

couple a nonlocal atomistic region to a local continuum region found in the literature, this

will lead to spurious forces near the interface. These forces, dubbed “ghost-forces” in the

QC literature, arise due to the fact that there is an inherent mismatch between the local

(continuum) and nonlocal (atomistic) regions in the problem. In short, the finite range of

interaction in the nonlocal region mean that the motion of repatoms in the local region will

effect the energy of nonlocal repatoms, while the converse may not be true. Upon differenti-

ating eqn. (13), forces on repatoms in the vicinity of the interface may include a nonphysical

contribution due to this asymmetry. Note that these ghost forces are a consequence of dif-

ferentiating an approximate energy functional, and therefore they still are “real” forces in

the sense that they come from a well-defined potential. The problem is that the mixed

local/nonlocal energy functional of eqn. (13) is approximate, and the error in this approxi-

mation is most apparent at the interface. A consequence of this is that a perfect, undistorted
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crystal containing an artificial local/nonlocal interface will be able to lower its energy below

the ground-state energy by rearranging the atoms in the vicinity of the interface. This is

clearly a non-physical result.

In Shenoy et al. (1998a), a solution to the ghost forces was proposed whereby corrective

forces were added as dead loads to the interface region. In this way, there is a well-defined

contribution of the corrective forces to the total energy functional (since the dead loads are

constant) and the minimization of the modified energy can proceed using standard conjugate

gradient or Newton-Raphson techniques. The procedure can be iterated to self-consistency.

Evolving microstructure: Automatic mesh adaption. The QC approach outlined

in the previous sections can only be successfully applied to general problems in crystalline

deformation if it is possible to ensure that the fine structure in the deformation field will be

captured. Without a priori knowledge of where the deformation field will require fine-scale

resolution, it is necessary that the method have an automatic way to adapt the finite element

mesh through the addition or removal of repatoms.

To this end, the QC makes use of the finite element literature, where considerable attention

has been given to adaptive meshing techniques for many years. Typically in finite element

techniques, a scalar measure is defined to quantify the error introduced into the solution by

the current density of nodes (or repatoms in the QC). Elements in which this error estimator

is higher than some prescribed tolerance are targeted for adaption, while at the same time

the error estimator can be used to remove unnecessary nodes from the model. The error

estimator of Zienkiewicz and Zhu (1987), originally posed in terms of errors in the stresses,

is re-cast for the QC in terms of the deformation gradient. Specifically, we define the error

estimator to be

εe =

[

1

Ωe

∫

Ωe

(F̄ − F e) : (F̄ − F e)dΩ

]1/2

, (17)

where Ωe is the volume of element e, F e is the QC solution for the deformation gradient in

element e, and F̄ is the L2-projection of the QC solution for F , given by

F̄ = SF avg. (18)

Here, S is the shape function array, and F avg is the array of nodal values of the projected

deformation gradient F̄ . Because the deformation gradients are constant within the linear

elements used in the QC , the nodal values F avg are simply computed by averaging the defor-

mation gradients found in each element touching a given repatom. This is then interpolated

throughout the elements using the shape functions, providing an estimate to the discretized

field solution that would be obtained if higher order elements were used. The error, then, is

defined as the difference between the actual solution and this estimate of the higher order

solution. If this error is small, it implies that the higher order solution is well represented
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by the lower order elements in the region, and thus no refinement is required. The integral

in equation eqn. (17) can be computed quickly and accurately using Gaussian quadrature.

Elements for which the error εe is greater than some prescribed error tolerance are targeted

for refinement. Refinement then proceeds by adding three new repatoms at the atomic sites

closest to the mid-sides of the targeted elements. Notice that since repatoms must fall on

actual atomic sites in the reference lattice, there is a natural lower limit to element size;

if the nearest atomic sites to the mid-sides of the elements are the atoms at the element

corners, the region is fully refined and no new repatoms can be added.

The same error estimator is used in the QC to remove unnecessary repatoms from the mesh.

In this process, a repatom is temporarily removed from the mesh and the surrounding region

is locally remeshed. If the all of the elements produced by this remeshing process have a

value of the error estimator below the threshold, the repatom can be eliminated.

Practical Issues in QC Simulations

In this section, we will use a specific, simple example to highlight the practical issues sur-

rounding solutions using the QC method. The example to be discussed is also provided

with the QC download at qcmethod.com, and it is discussed in even greater detail in the

documentation that accompanies that code.

Problem definition. Consider the problem of a twin boundary in face-centered cubic

(FCC) aluminum. The boundary is perfect but for a small step. A question of interest may

be “how does this stepped boundary respond to mechanical load?” In this example, we probe

this question by using the QC method to solve the problem shown in Figure 3(a), where

two crystals, joined by a stepped twin boundary, are sheared until the boundary begins to

migrate due to the load. The result will elucidate the mechanism of this migration.

The implementation of the QC method used to solve this problem has been described as

“two and a half” dimensional to emphasize that, while it is not a fully 3D model it is also

not simply 2D. Specifically, the reference crystal structure is 3D, and all the underlying

atomistic calculations (both local and nonlocal) consider the full, 3D environment of each

atom. However, the deformation of the crystal is constrained such that the three components

of displacement, ux, uy and uz are functions only of two coordinates x and y. This allows, for

example, both edge and screw dislocations, but forces the line direction of the dislocations to

be along z. For the reader who is familiar with purely atomistic simulations, this is equivalent

to imposing periodic boundary conditions along the z direction, and then using a periodic

cell with the minimum possible thickness along z to produce the correct crystal structure.

Although we sometimes refer to this as a “2D” implementation for brevity, but ask that the

reader bears in mind the true nature of the model. The use of a 2D implementation of the QC
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to study this problem is appropriate given its geometry. However, fully 3D implementations

of the QC exist and these must be used for many problems of interest (see examples in Miller

and Tadmor (2003)).

The starting point for a QC simulation is a crystal lattice, defined by an origin atom and

a set of Bravais vectors as in eqn. (1). To allow the QC method to model polycrystals, it

is necessary to define a unique crystal structure within each grain. The shape of each grain

is defined by a simple polygon in 2D. Physically, it makes sense that the polygons defining

each grain do not overlap, although it may be possible to have holes between the grains. In

our example, it is easy to see how the shape of the two grains could be defined to include

the grain boundary step. Mathematically, the line defining the boundary should be shared

identically by the two grains, but this can lead to numerical complications; for example in

checking whether two grains overlap. Fortunately, realistic atomistic models are unlikely to

encounter atoms that are less than an Angström or so apart, and so there exists a natural

“tolerance” in the definition of these polygons. For example, a gap between grains of 0.1

Å will usually provide sufficient numerical resolution between the grains without any atoms

falling “in the gap” and therefore being omitting from the model.

In the QC implementation, the definition of the grains is separate from the definition of

the actual volume of material to be simulated. This simulation volume is defined by a

finite element mesh between an initial set of repatoms. Each element in this mesh must lie

within one or more of the grain polygons described above, but the finite element mesh need

not fill the entire volume of the defined grains. It is useful to think of the actual model

(the mesh) being “cut-out” from the previously defined grain structure. For our problem,

a sensible choice for the initial mesh is shown in Figure 3(a), where the grain boundary

lies approximately (to within the height of the step) along the line y = 0. Elements whose

centroid lie above or below the grain boundary are assumed to contain material oriented

according to the lattice of the upper or lower grain, respectively.

Since our interest here is atomic scale processes along the grain boundary, it is clear that the

model shown in Figure 3(a), with elements approximately 50 Å in width, will not provide

the necessary accuracy. Thus, we can make use of the QC’s automatic adaption to increase

the resolution near the grain boundary. The main adaption criterion, as outlined earlier, is

based on error in the finite element interpolation of the deformation gradient. However, there

will initially be no deformation near the grain boundary and thus no reason for automatic

adaption to be triggered. It is therefore necessary to force the model to adapt in regions

that are inhomogeneous at the atomic scale for reasons other than deformation. To this end,

we can identify certain segments of the grain boundary as “active” segments. Any repatom

within a prescribed distance of an active segment will be made nonlocal. This further implies

that the elements touching this repatom will be targetted for refinement, since we require

that nα = 1 for all nonlocal repatoms. The effect of such a technique is shown in Figure 3(b),

where the segment of the boundary between x = −100 Å and x = 100 Å was defined to be
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active. The result is that the grain boundary structure is correctly captured in the vicinity

of the step, as well as for some distance on either side of the step.

Solution procedure. In the static QC implementation, the solution procedure amounts

to minimization of the total energy (elastic energy plus the potential energy of the applied

loads, see eqn. (6)) for a given set of boundary conditions (applied displacements or forces

on certain repatoms). However, problems solved using the QC method are typically highly

nonlinear, and as such their energy functional typically includes many local minima. In order

to find a physically realistic solution, it is typically necessary to use a quasi-static loading

approach, whereby boundary conditions are gradually incremented, the energy is minimized,

and the minimum energy configuration is used in generating an initial guess to the solution

after the subsequent load increment. Again, we can refer to the specific example of the

stepped twin boundary to make this more clear.

Our desire, in this example, is to study the effect of applying a shear strain to the stepped twin

boundary. Specifically, we may be interested in knowing the critical shear strain at which the

boundary begins to migrate and to understand the mechanism of this migration. We begin

by choosing a sensible strain increment to apply, such that the incremental deformation will

not be too severe between minimization steps. For this example, the initial guess, un+1
0 , used

to solve for the relaxed displacement, un+1, of load step n + 1 is given by

un+1
0 = un + ∆FX, (19)

where un is the relaxed, minimum energy displacement field from load step n, u0 = 0, and

the matrix ∆F corresponding to pure shear along the y direction is

∆F =





1 ∆γ 0

0 1 0

0 0 1



 . (20)

Thus, a shear strain increment of ∆γ is applied, the outer repatoms are held fixed to the

resulting displacements, and all inner repatoms are relaxed until the energy reaches a mini-

mum. Then, another strain increment is superimposed on these relaxed displacements and

the process repeated. After n load steps, a total macroscopic shear strain of γ = n∆γ has

been applied to the outer boundary of the bi-crystal.

The energy minimization can be performed using several standard approaches, such as the

conjugate gradient (CG) or the Newton-Raphson (NR) methods (both of which are de-

scribed, for example, in Press et al. (1992)). The CG method has the advantage over the NR

technique in that it requires only the energy functional and its first derivatives with respect

to the repatom positions (i.e., the forces). The NR method requires a second derivative, or

“stiffness matrix” that is not straightforward to derive or to code in an efficient manner.

13



Once correctly implemented, however, the NR method has the advantage of quadratic con-

vergence (compared to linear convergence for the CG method) once the system is close to

the energy minimizing configuration.

By monitoring the applied force (measured as the sum of forces in the y-direction applied to

the top surface of the bi-crystal) versus the accumulated shear strain, γ, it can be observed

that there is an essentially linear response for the first six load steps, and then a sudden load

drop from step six to seven. This jump corresponds to the first inelastic behaviour of the

boundary, the mechanism of which is shown in Figure 4. In Figure 4(a), a close-up of the

relaxed step at an applied strain of γ = 0.03 is shown, while Figure 4(b) shows the relaxed

configuration after the next strain increment at γ = 0.035. The mechanism of this boundary

motion is the motion two Shockley partial dislocations from the corners of the step along

the boundary. This can be seen clearly by observing the finite element mesh between the

repatoms in Figure 4(c). Because the mesh is triangulated in the reference configuration,

the effect of plastic slip is the shearing of a row of elements in the wake of the moving

dislocations.

One challenge in modeling dislocation motion in crystals at the atomic scale is evident in

this simulation. In crystals with a low Peierls resistance like the FCC crystal modelled here,

dislocations will move long distances under small applied stresses. In this simulation, the

Shockley partials which nucleated at the step move to the ends of the region of atomic-

scale refinement. In order to rigorously compute the equilibrium position of the dislocations,

it would be necessary to further adapt the model. The presence of the dislocation in close

proximity to the larger elements to the left of the fully-refined region will trigger the adaption

criterion, as well as increase the number of repatoms that are nonlocal according to the

nonlocality criterion defined earlier. This will allow the dislocations to move somewhat

further upon subsequent relaxation. In principle, this process of iteratively adapting and

relaxing can be repeated until the dislocations come to its true equilibrium, which in this

example would be at the left and right free surfaces of the bi-crystal.

In practice, however, we may not be interested in the full details of where this dislocation

comes to rest, if we are willing to accept some degree of error in the simulation. Specifically,

the fact that the dislocation is held artificially close to the step may effect the critical load

level at which subsequent migration events occur. The compromise is made for the sake of

computational speed, which will be significantly compromised if we were to iteratively adapt

and relax many times for each load step.

Summary

This review has summarized the theory and practical implementation of the QC method.

Rather than provide an exhaustive review of the QC literature (which can already be

found, for example, in Miller and Tadmor (2003)), the intent has been to provide a simple
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overview for someone interested in understanding one implementation of the QC method.

More specific details, including free, open-source code and documentation, can be found at

www.qcmethod.com.
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(a)
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D

(b)

Figure 1: Selection of repatoms from all the atoms near a dislocation core are shown in (a),
which are then meshed by linear triangular elements in (b). The density of the repatoms
varies according to the severity of the variation in the deformation gradient. After Miller
and Tadmor (2003). Reproduced with permission.
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Reference Deformed

surface
atom

bulk atom

interface
atom

Figure 2: On the left, the reference configuration of a square lattice meshed by triangular
elements. On the right, the deformed mesh shows a bulk atom, for which the CB rule is
exactly correct, and two other atoms for which the CB rule will give the wrong energy due
to its inability to describe surfaces or changes in the deformation gradient. After Miller and
Tadmor (2003). Reproduced with permission.
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Figure 3: (a) Initial coarse mesh used to define the simulation volume and (b) the final mesh
after the automatic adaption.
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(a)

Initial Boundary Location

(b)

Boundary Migration

(c)

Slip of Shockley Partials

Figure 4: Mechanism of migration of the twin boundary under shear. (a) before migra-
tion, (b) after migration and (c) deformed mesh showing the motion of Shockley partial
dislocations.
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