QC REFERENCE MANUAL VERSION 1.3

R. E. Miller and E. B. Tadmor

www.qcmethod.com

May 2007

Contents

1 Introduction

2 QC Code structure

Module mod_global
QC Variables
Module mod_boundary
Module mod_grain
Module modmesh
Module mod_outputo
Module mod_pload
Module mod_qclib
Module mod_repatom
Module mod_stiff
User-Specified Routines
2.11.1 user_mesh
2.11.2 user_bcono
2.11.3 user_pdel
2.11.4 wuser_potential
2115 userplot

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11

3 Head Stage

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

4.1

4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11

Commands

Macro ’cons’ : read in potential specific constitutive input
Macro ’end ’ : terminate head stage
Macro ’fact’ : sets global run factors
Macro ’flag’ : sets global run flags
Macro ’grai’ : read in grain structure information, initialize grains

Macro *mate’ : material data input
Macro ’mesh’ : generate mesh (user_mesh routine)
Macro ’zone’ : define special-attribute zones

Macros Stage Commands

Macro ’adap’ : Automatically adapt the mesh, through mesh refining and

coarsening

Macro ’beon’ : apply boundary conditions (user_bcon routine)
Macro ’chec’ : Numerical derivative check
Macro ’clea’ : Re-initialize solution variables.
Macro ’conv’ : Loop convergence test
Macro ’dtim’ : set time increment L
Macro ’form’ : Form the out-of-balance force vector
Macro ’ghos’ : Compute ghost forces correction
Macro ’loop’ : set loop start indicators L.
Macro ’next’ : loop terminator control
Macro ’outp’ : output nodal displacements to the log file

10
10
12
12
15
15
16
17
17
18
32
38
40
44

46
46
47
47
48
50
50
o1
o1

52

4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25

Macro
Macro
Macro
Macro
Macro
Macro
Macro
Macro
Macro
Macro
Macro
Macro
Macro
Macro

’pdel’ :
‘plot’ :
’prop’ :
‘prot’ :
’repo’ :
‘rest’ :
’setp’ :
’solv’ :
’stat’ :
’stpr’ :
’syst’ :
’tang’ :
’time’ :
’tole’ :

compute current external load and applied displacement . . 59
generate plot files oo 59
define proportional load table 64
protect existing nodes from being deleted by coarsening . . 65
print out current energy and out-of-balance forces 65
read /write restart files. 66
store current resultant for comparison in conv,pdel 68
call solver routine L. 68
Recompute local /nonlocal representative atom status . . . 69
print state variables (stress, strain other elemental quantities) 71
compute system matrix and right-hand side concurrently . 71
form tangent stiffness 71
increment timeo 72

set solution tolerance 72

1.0 Introduction 1
1 Introduction

The quasicontinuum (QC) method is a multiscale method combining atomistic simulations
with nonlinear continuum finite elements. Theoretical details about the method are given in
a series of papers [1, 2, 3, 4, 5]. This manual describes the details of using the freely-available
QC method code distributed on the QC website www.qcmethod.com. The code is written in
Fortran 90 and is designed to be as portable as possible. It has been successfully tested with
a variety of different Fortran compilers'. Porting to new compilers and architectures should
be straightforward.

The current distribution version of the QC code has certain limitations:

e [t is limited to two-dimensional boundary value problems that can be described with

displacement fields of the form

ug(z,y), uy(r,y), wu.(z,y).

Despite the two-dimensional constraint, all atomistic calculations are performed in
three dimensions. This corresponds to simulating a slab with periodic boundary con-
ditions applied in the out-of-plane direction that has a thickness equal to the minimum
crystallographic repeat distance in that direction. This can be used, for example, to
correctly simulate a dislocation whose line is perpendicular to the simulation plane,

but not one inclined to it.

e The code is limited to crystalline materials with a simple lattice structure, such as fcc
and bcc metals. It is currently not possible to simulate complex crystal materials such
as hcp metals or unit cells containing multiple species. (It is possible to simulate a

system containing multiple simple crystals in separate grains.)

e The code is a static energy minimization code. It can be used to study equilibrium

structures at zero temperature, but not dynamical processes or finite temperature

1See Section 1.2 of the QC Tutorial Guide for a list of supported compilers.

1.0 Introduction 2

effects.

e The atomic interactions are limited to empirical potentials in which the energy of the
total system can be decomposed as a sum over individual atom energies. The current
implementation includes the embedded-atom method (EAM) potential [6]. It should

be straightforward to implement other potential forms.

These issues do not constitute limitations to the QC methodology itself (see for example [7]
for extension to three dimensions, [8, 9] for extension to complex crystals, [10] for extension
to finite temperature, and [11] for incorporation of quantum mechanical calculations within

QC). These developments are planned for future releases of the distribution code.

Performing a QC simulation requires the preparation of five user routines that are linked
in with the QC code? and an input file containing a set of instructions to the QC program
based on the simple command line interface originally provided with the program FEAP
[12]. This manual provides the information necessary to complete these two tasks. Section 2
provides an overview of the QC program structure along with information on how to prepare
the user routines. Sections 3 and 4 provide a listing of all the QC commands that can appear
in the input file, with details of the command syntax, options and function. QC simulations
are comprised of two stages, each with its own set of commands. Therefore, the listing is
split into the head stage commands (Section 3) and the macros stage commands (Section 4).
Within each stage, the commands are listed alphabetically.

For users that are unfamiliar with QC simulations, a good starting point is the QC
Tutorial Guide, which traces through a simple example simulation. This reference manual is
intended to provide complete detail of the user routines and input commands, but assumes

that the user is already familiar with the QC approach.

2For many simulations only one of the five user routines is required and the rest can be left blank.

2.0 QC Code Structure 3

2

QC Code structure

The QC code consists of one main file qcmain.f and a large number of additional files

beginning with the suffix mod_ each containing one Fortran 90 module dedicated to a specific

task or closely-related set of tasks. Each module contains routines and/or variables related

to its task. The QC modules and the tasks they deal with are:

mod_adaption.f: Automatic mesh refinement and coarsening.
mod_bandwidth.f: Nodal renumbering to minimize the stiffness matrix bandwidth.

mod_boundary.f: Model boundary and special-attribute zones. See a more detailed
description in Section 2.3.

mod_check.f: Numerical derivative checks for debugging purposes.
mod_cluster.f: Building and manipulation of clusters of atoms.
mod_crystal.f: Generation of crystal lattice structures.
mod_element.f: Finite element routines.

mod_file.f: File opening and handling routines.

mod_ghost.f: Ghost force correction calculations.

mod_global.f: Global variables and initialization. See a more detailed description in
Section 2.1.

mod_grain.f: Definition and calculations related to crystallographic grains. See a
more detailed description in Section 2.4.

mod_head.f: Processing of head stage commands.
mod_macros.f: Processing of macro stage commands.
mod material.f: Definition of model materials.

mod mesh.f: Mesh generation (Delaunay triangulation). See a more detailed descrip-
tion in Section 2.5.

mod_nonstandard.f: Non-standard Fortran routines.
mod_output.f: QC output interface. See a more detailed description in Section 2.6.

mod_pload.f: System time and load variables. See a more detailed description in
Section 2.7.

mod_plotting.f: Plot generation in Tecplot® format.
mod_poten_eam.f: Atomic-interaction potential (embedded-atom method).

mod_qclib.f: Library of miscellaneous routines. See a more detailed description in
Section 2.8.

2.0 QC Code Structure Z

e mod_repatom.f: Definition and calculations related to representative atoms. See a
more detailed description in Section 2.9.

e mod_restart.f: Simulation restart file manipulation.

e mod_savemesh.f: Auxiliary module to the adaption module used for storage of meshes
and transferring of field data.

e mod_solve.f: : Conjugate gradient and Newton-Raphson solvers.

e mod stiff.f: : Stiffness matrix storage and handling. See a more detailed description
in Section 2.10.

e mod_types.f: : Fortran type declarations.

Unless the user is interested in modifying the QC code itself, it is not necessary to understand
most of these routines to use the code. The important modules that a user must be familiar
with are detailed below.

In addition to the modules that come with the code, the user must supply a file user_APP. f
for every application (where APP is the application name) containing the following five rou-

tines:

e user_mesh: This routine produces the mesh. It is called by the command mesh and is

discussed in Section 2.11.1 and in Section 3.7 of the QC Tutorial Guide.

e user_bcon: This routine applies application-specific boundary conditions. It is called
by the command bcon and discussed in Section 2.11.2 and in Section 4.7 of the QC

Tutorial Guide.

e user pdel: This routine defines a scalar measure of the applied force for a given
boundary condition. This is discussed in Section 2.11.3 and in Section 4.9 of the QC

Tutorial Guide.

e user_potential: This routines computes the energy (and corresponding force and
stiffness) associated with an external potential. These contributions are added to the
total energy of the system and its derivatives. This is an alternative approach to

applying boundary conditions. It is discussed in Section 2.11.4.

2.1 Module mod_global D

e user _plot: This routine gives the user the opportunity to create specialized plots for

the defined application. This is discussed in Section 2.11.5.

Below we elaborate on the important variables and routines in modules that the user may
need to use when constructing the user-specified routines. Following that details of the user

routines themselves are given.

2.1 Module mod_global

mod_global provides access to globally-defined variables that do not neatly fit into other

more specific modules. The most relevant of these for user routines are the following:
e cmdunit (Integer): File handle for the parsed command file. See Section 2.11.1.
e dp (Integer): Standard double precision kind value.?

e hmin, (Real, default=0.0): Minimum allowed element side size. Enforced by the adap-

tion routine if different from zero.

e iregion(l:numnp) (Integer, default=1): The meshing region to which each node is

assigned. See Section 2.11.1.
e maxel (Integer): Maximum number of elements in the mesh.
e maxneq (Integer): Maximum number of equations in the system, (maxnp*ndf).
e maxnp (Integer): Maximum number of nodes in the mesh.

e ndf (Integer, default=3): Number of degrees of freedom per node.

3This variable defines a standard double precision kind value to be used by QC. Instead of using the
Fortran statement double precision to define real double precision variables, the statement real (kind=dp)
is used. Double precision constants are written with _dp rather than the d exponent (e.g. 1.0_dp instead of
1.d0). Conversion of integers to double precision is done with real(n,dp) instead of dble(n), where n is
an integer. These changes have been introduced to make the QC code portable, since the Fortran standard
does not contain a definition for the double precision statement. The current version of the code uses
dp=selected real kind (p=15,r=307) for 15 digit precision and a decimal exponent range of 307. This is
what corresponds to double precision on most platforms.

2.2 QC Variables 6

e ndm (Integer, default=2): Number of spatial dimensions.
e nen (Integer, default=3): Number of nodes per element.

e nregion (Integer, default=1): The number of unconnected separately meshed regions

in the model. See Section 2.11.1.
e numel (Integer): Current number of elements in the mesh.
e numnp (Integer): Current number of nodes in the mesh.
e nxdm (Integer, default=3): Number of nodal coordinate dimensions.
e neq (Integer): Number of equations (ndf*numnp).
e nq (Integer, default=14): Dimension of element internal variable array, q().
e nstr (Integer, default=6): Dimension of stress str and strain eps arrays.

e SymmetricMesh (Logical, default=.False.): Flag indicating whether the meshing rou-

tine delaunay should attempt to create a symmetric mesh. See Section 2.11.1.

e SymmetryDof (Integer): For a SymmetricMesh sets the symmetry plane (1: symmetric

relative to x = SymmetryValue, 2: symmetric relative to y = SymmetryValue).
e SymmetryValue (Real): Symmetry value for a SymmetricMesh. See above.

For more detail on these and other variables, see the file mod_global.f.

2.2 QC Variables

In addition to variables stored in mod_global, QC passes many of its variables as subroutine
arguments. A list of the most important ones is given below. The dimensions that appear

in array variables are defined in Section 2.1.

2.2 QC Variables 7

e b(ndf,numnp): (double precision) Nodal displacement array. b(i,j) stores the ith
component of the displacement of the jth node. If desired, it can be initialized to
some value during mesh generation. It is typically modified in the user_bcon routine
as a means of applying an initial guess to the solution of the nonlinear problem at
hand. See Section 4.2 for details. Note that b is initialized to zero at the start of the

simulation.

e db(ndf ,numnp): (double precision) Nodal displacement increment. db(i, j) stores the
most recent change in the ith component of the displacement of the jth node. This is

typically the change due to an iterative step in the Newton-Raphson solver.

e dr(ndf,numnp): (double precision) Out-of-balance force vector. dr(i,j) stores the
ith component of the current out-of-balance force on the jth node. In equilibrium
configurations this vector will be close to zero. The norm of this vector is often used
as a convergence criterion during a Newton-Raphson solution phase. Note that dr is
initialized to zero at the start of the simulation. See Section 2.11.4 for an example of

how this variable is used.

e eps(nstr,numel): (double precision) Elemental strain array. eps(i,j) stores the
ith component of the Lagrangian finite strain in the jth element. Order of storage
is By, By, E.., Eyy, B2, E,.. eps is an output variable and will be computed
from the current displacement values every time the energy or out-of-balance forces

are computed.

e f(ndf,numnp): (double precision) The boundary condition array. f(i,j) stores the
ith component of a normalized force applied to node j (if 1d(i,j)=0) or of a normal-
ized displacement (if id(i,j)=1) that is used to apply the boundary conditions. See
Section 2.11.2 for a discussion on the application of boundary conditions in QC. For
degrees of freedom that are unconstrained and have no applied force, the corresponding

f(i,j) entry must be set to zero (which is the default value to which it is initialized).

2.2 QC Variables 8

n N]_:l_E-r]
N,=¢

3 N3:

1
X
1 2
3
1

Figure 1: Parent element and shape functions used in the QC method.

e id(ndf,numnp): (integer) The boundary constraint flag array id(i,j) stores a flag
that identifies whether a node j is to have a fixed ith component of displacement
(id(i,j)=1) or not (id(i,j)=0). This array is set by the user, either during the
generation of the initial mesh in user_mesh (Section 2.11.1) or during application of

boundary conditions in user_bcon (Section 2.11.2).*

e itx(3,numel): (integer) The adjacency matrix. itx(j,i) stores the element number
adjacent to the jth side of element i. The initial itx array is created during mesh

generation in the user_mesh routine (Section 2.11.1).

e ix(nen,numel): (integer) The connectivity array. ix(j,i) stores the global node
number of the jth node defining element i. The initial ix array is generated by the

user_mesh routine (Section 2.11.1).

e jdiag(neq): (integer) Pointer into the stiffness matrix which is stored in a collapsed

banded format. jdiag is used to efficiently store the sparse stiffness matrix.

4Note also that the mesh adaption routine will assign id values to new nodes as they are added to the mesh
based on nearby existing nodes. Specifically, a node j3 is added to the mesh by bisecting an edge between
two existing nodes, j1 and j2. The ith degree of freedom of the new node will be assigned id(i,j3)=1 if
(and only if) id(j1,i)=1 and id(j2,1)=1.

2.2 QC Variables 9

e shp(nshp,numel): (double precision) Shape functions. The QC method uses three-
node linear elements, thus there is only one Gauss point at the centroid of each element.
The isoparametric formulation is used, with the parent element, local node numbering
and shape functions as shown in Fig. 1. More information on the finite element formu-
lation can be found in, for example, [12]. For each element i, the following is stored

in shp:

shp(1,1): Derivative 0N, /0z.
— shp(2,1i): Derivative ON;/0y.
— shp(3,1): Value of N; at the Gauss point (0.333_dp).
— shp(4,1i): Derivative N5 /0.
— shp(5,1i): Derivative N, /0y.
— shp(6,1): Value of N, at the Gauss point (0.333_dp).
— shp(7,1): Derivative ON3/0x.

— shp(8,1i): Derivative ON3/0y.

shp(9,1): Value of N3 at the Gauss point (0.333_dp).
Here N;(z,y) is the shape function associated with node 1.

e str(nstr,numel): (double precision) Elemental stress array. str(i,j) stores the ith
component of the Kirchhoff stress® in the jth element. Order of storage is Tz, Tyy,
Tazy Tay, Tazs Tyz- STT is an output variable and will be updated each time the energy
or out-of-balance forces are computed for a given set of nodal displacements. The

elemental stresses are only computed in elements which touch local nodes.

e q(ng,numel): (double precision) Elemental internal variable array. q stores several

elemental quantities. For element iel:

®Note that the Kirchhoff stress 7 is related to the Cauchy stress (or true stress) o that is more commonly
used through the relation 7 = Jo, where J is the determinant of the deformation gradient F', which is stored
in the internal variable array q.

2.3 Module mod_boundary 10

— q(1,iel): Strain energy density.

— q(2:10,iel): Deformation gradient components in Fortran column order (Fy;,

Fo, Fs1, Fia, Fa, Fsy, Fi3, Fhg, Fs3).

q(11:13,1iel): Eigenvalues of the right Cauchy-Green deformation tensor, C' =
F'F.

q(14,iel): Grain number containing the centroid of the element.

e x(nxdm,numnp): (double precision) The reference coordinate array. x(1..nxdm,i)
stores the reference coordinates of the ith repatom (node). Note that even though the
fields in the current QC implementation are limited to two dimensions, the x array has
three components (nxdm=3) in order to store the correct atomic crystal structure. The

initial x array is generated by the user mesh routine (Section 2.11.1).

e xsj(numel): (double precision) Elemental areas. xsj (i) stores the area (in the unde-

formed configuration) of element i.

2.3 Module mod_boundary

Module mod_boundary contains information and routines related to the boundaries of the
QC model. Particularly relevant for the user are the variables ncb, nce, NCEMAX and elist ()
used to define outer and inner boundaries of the model that must be respected by the mesh
generation routine. The variable active () is used to define boundary segments that trigger

nonlocality. These variables are described in detail in Section 2.11.1.

2.4 Module mod_grain

Module mod_grain contains data and routines related to the definition and processing of
the crystallographic grains making up the system. The data in this module is not directly
accessible to the user (to prevent inadvertent errors being introduced). However, a series

of routines have been defined to allow a user to query the values of variables stored there.

2.4 Module mod_grain 11

Some of these variables can be very useful for generating the initial arrangement of nodes

in user_mesh. This is discussed further in Section 2.11.1. See also Section 3.5 of the QC

Tutorial Guide where the grain definition and associated variables are defined. The data

query routines in mod_grain are:

NumGrains: number of grains

GetGrainCellSize: repeating cell dimensions for a given grain
GetGrainNumCell: number of atoms in the repeating cell for a given grain
GetGrainCellAtom: coordinates of a given atom in the repeating cell for a given grain
GetGrainBvec: Bravais vector matrix for a given grain

GetGrainBinv: inverse Bravais vector matrix for a given grain
GetGrainRefStiff: reference stiffness matrix for a given grain
GetGrainRefatom: reference atom for a given grain

GetGrainSpecies: atomic species for a given grain

GetGrainNumVrts: number of vertices for polygon of a given grain
GetGrainVertex : given vertex of the polygon of a given grain

GetGrainXlatvect: crystallographic axes for a given grain

Another useful routine in mod_grain is NearestBSite that returns the nearest Bravais site

to a given point. This routine is used to ensure the requirement normally imposed in QC

that nodes must occupy lattice sites in the reference configuration. The use of this routine

and its calling format are discussed in Section 2.11.1.

2.5 Module mod_mesh 12

2.5 Module mod _mesh

Module mod_mesh contains routines related to the generation of two-dimensional triangular
meshes. This module is built around contri, a constrained Delaunay triangulation program

developed by Sloan [13, 14]. Two routines in mod_mesh are accessed by users:

e delaunay: the main triangulation routine that calls contri. This routine is discussed

in Section 2.11.1.

e PerturbMesh: a routine for slightly perturbing (or unperturbing) the nodes in a mesh
prior to (or after) triangulation to obtain uniform or symmetric meshes. This is dis-

cussed in Section 2.11.1.

2.6 Module mod output

Module mod_output provides a standardized interface for generating output in QC. Rather
than printing directly to the output stream, a set of routines and associated variables are
provided that allow the user to generate output in the user routines consistent with the
QC format. This includes an indentation hierarchy that positions the output in way that
makes reading output files much easier. The output interface has three main components

for generating (1) standard output, (2) error messages, and (3) log file entries.

1. To generate standard output, the desired output is stored in the character (1len=160)

variable string and then a call output statement is issued. For example,

string = ’Message from the user!’
call output

will print the text “Message from the user!” in the appropriate place in the QC output

file. Variable data can be printed in the following manner:

write(string,’(a,ib)’) ’**numnp = ’,numnp
call output

2.6 Module mod_output 13

The write statement places the formatted output in string, which is then sent to the

output file by call output.

2. To generate an error message, the nerror lines of the message are stored in the
character(len=160) array error (nerrmax). Note that nerror must be less than
the maximum allowed value nerrmax (currently set to 25). The output is generated
by issuing a call erroroutput statement. Typically this statement is followed by a

stop statement to terminate program execution. For example,

if (kount > maxnp) then
nerror = 2

error(1l) =
& ’Number of nodes exceeds maxnp in subroutine user_mesh’
write(error(2),’(a,ib)’) ’**maxnp = ’,maxnp
call erroroutput
stop
endif

This code segment from a user_mesh routine checks whether the number of nodes
generated by the meshing routine (given by kount) exceeds the maximum allowed value
of maxnp. If it does, an appropriate error message is issued and execution terminates.
The call erroroutput statement will send the error message to the output file and
will also generate a log entry in the log file. As for standard output, variable data can

be stored in error() lines using write statements.

3. The log file qc.log is used to output large amounts of data that would clutter up
the standard output file. To generate a log file entry, the desired output is stored in
the character(len=160) variable string and then a call logoutput statement is

issued. For example,

I Check for repeating nodes
do i =1, numnp
do j = i+l, numnp
if (abs(x(1,i)-x(1,j)) <
& abs(x(2,1)-x(2,j)) <
nerror = 2
write(error(1),’(a,i5,a,i5)’) ’Node’,j,’ coincides with’,i

tol .and.
tol) then

N S

2.6 Module mod_output 14

error(2) =
& ’Node list sent to log file (subroutine user_mesh)’

call erroroutput

I 1ist nodes to log file

string = ’Node List:’; call logoutput

string = ’ node X y ’

call logoutput

do k=1,numnp
write(string,’(i5,2x,£12.5,2x,f12.5) ")k,x(1:2,k)
call logoutput

enddo

stop

endif
enddo
enddo

This code segment checks for coincident nodes (two nodes located at the same position)
in the user_mesh routine for Friction_example®. If a coincident node is found, an
error message is issued and the complete list of nodes is sent to the log file to facilitate

debugging. A typical output to the log file is given below:

--Log Entry 2 2007-05-12 13:50
QC simulation terminated due to error.
x ERROR: Node 364 coincides with 363
Node list sent to log file (subroutine user_mesh)

Node List:

node X y
1 -499.73534 -498.98750
2 -400.04389 -498.98750
3 -300.35244 -498.98750
4 -200.66099 -498.98750

Note that the error message is also sent to the log file as explained above. The error
statement created a new Log Entry indicated by a number and time stamp. The
output generated by logoutput simply follows this. In some cases it may be necessary
to generate log file output without a preceding error message. In this case a call
logentry statement must be issued before the first logoutput to create a new log

entry to separate the generated output from earlier entries in the log file.

6See QC Tutorial Guide for more information.

2.7 Module mod_pload 15

2.7 Module mod_pload

Module mod_pload provides access to variables and routines related to the proportional
loading table and time” management. The data in this module is not directly accessible to
the user (to prevent inadvertent errors being introduced). However, a series of routines have
been defined to allow a user to query the values of variables stored there. Some of these
variables can be necessary to the user when applying boundary conditions. See Section 2.11.2
for a discussion of how boundary conditions are applied in QC. The data query routines in

mod_pload are:
e GetLoadTime: current loading time (time)
e GetLoadTimeStep: current loading timestep (dt)
e GetLoadPropFact: current loading proportional factor (prop)
e GetLoad0ldPropFact: previous loading proportional factor (propol)

e TimeStepMax: compute the maximum possible time step that after the application of
boundary conditions will just result in a node being pushed onto the opposite element

side, i.e. that will cause element warping.

e PropToTime: given a current time and a desired property value, returns the required

future time.

See module mod_pload for details on the calling format for these routines. Some examples

of their use are given below in Section 2.11.2.

2.8 Module mod_qclib

Module mod_qclib is a library of general-purpose routines used by other modules in QC.

There are a variety of vector and matrix manipulation routines, geometric routines, character

"This version of QC is a static zero temperature implementation. “time” refers to an arbitrary load step
counter and not an actual measure of time.

2.9 Module mod_repatom 16

string manipulation routines, and miscellaneous routines (such as a pseudo random number
generator). Details of these routines are given in mod_qclib and will not be reproduced here,
except for three routines that are particularly important for the user programs. The first

two are routines used to parse input lines from the input file:
e next: integer function to find the next delimiter (comma or space) in a string.
e freein: subroutine to parse free-form input lines.

These two commands work in tandem to extract variables from the comma delimited vari-
ables on QC input lines. Examples of how these routines are used are given in Sections 2.11.1
and 2.11.2.

The third useful routine in mod_qclib is gsortr. This routine sorts the first column
of a 1ist containing two columns and n rows according to a key variable xkey. The sort-
ing direction is determined by the variable sign (= 1.0 for ascending sort, = —1.0 for
descending sort). For an ascending sort, upon return from gsortr all elements satisfy:

xkey (1ist(1,1)) < xkey(list(1,i+1)). The calling format is:
call gsortr(n,list,xkey,sign,listdim,keydim)

Here 1istdim is the allocated dimension of 1ist (n < listdim) and keydim is the allocated
dimension of xkey (keydim > max{list(1,1:n)}). This routine is used in user_mesh to sort
the nodes defining outer and inner boundaries (i.e holes) in the model in counter-clockwise

and clockwise directions, respectively. See Section 2.11.1 for more information on this.

2.9 Module mod_repatom

Module mod_repatom is one of the main modules in the QC code dealing with many aspects
of the definition and processing of representative atoms. Users should not need to directly
access variables in this module. The exception is the logical array protected() that allows

a user to mark certain representative atoms as permanent, i.e. ones that cannot be deleted

2.10 Module mod_stiff 17

by the adaption routine during its coarsening phase. For example, to protect node i from

deletion set
protected(i) = .true.

in user_mesh. Normally the reason for doing this is to maintain a “skeleton” of the model
even if the coarsening algorithm determines that most nodes are not necessary. It is also

possible to set protected from the input file. This is discussed in Section 4.15.

2.10 Module mod _stiff

Module mod_stiff is used to store the tangential stiffness matrix tang. To minimize storage
requirements the symmetric banded nature of the stiffness matrix is exploited. Only the main
diagonal of the stiffness matrix and columns of numbers above the diagonal that terminate
in a non-zero element are stored. This list of numbers is stored in concatenated form in tang
with the associated vector jdiag(i) pointing to the position of the (i,i)-th element of the
stiffness matrix. A function istiff that is also located in mod_stiff returns the index into

tang for a specific element. See Section 2.11.4 for an example how these variables are used.

2.11 User-Specified Routines

As noted above the user must supply QC with a user_APP.f containing five routines. At
the top of this file is a module mod_uservars that can be used by the user to pass variables
between the different user routines. For reasons of downward compatibility the module

always contains the following two arrays:®

e user_iparam(10) (Integer): Array of integers available for storage of user-specific

parameters to pass information between the user routines. See Section 2.11.1.

e user_rparam(10) (Real): Same as above for real (double precision) variables.

8In earlier versions of QC these variables were stored in module mod_global.

2.11.1 user_mesh 18

See Section 2.11.4 for an example how module uservars is used. The required user routines

are described in the following sections.

Note: In order to facilitate the porting of user mesh, user _bcon and user_pdel routines
from earlier versions of QC (where they were stored in separate files), a user_template.f
file is supplied with the distribution code in the QC directory. This file is complete except for
blank places left for these routines along with helpful instructions on the changes that must

be introduced to port over old files.
2.11.1 user_mesh

Other than the mesh generators provided with specific examples in the QC package, there
are no mesh-generating capabilities in QC. Instead, the user is required to write a mesh
generating routine user_mesh and compile and link it with the main QC routines. QC does
include a number of tools, most notably a constrained Delaunay triangulation routine [13],
that facilitate mesh generation. These tools are described below.

The user_mesh routine is initiated by a mesh statement in the head stage of the input

file (see Section 3.7). The calling format for this macro is
mesh[,key] [,data]

where key and data are problem-specific data that are passed to user mesh as explained
below. In addition, the lines immediately following the mesh command in the input file can
be read by this routine to provide additional input to the mesh generator. See below under
the heading “Direct input to the user_mesh routine” for more information on this.

The header of a typical user_mesh subroutine is as follows:

subroutine user_mesh(id,x,ix,f,b,itx,key, input)
use mod_uservars

use mod_global, only : dp,maxel,maxnp,ndf,ndm,nen,numel,numnp,
& nxdm
use mod_output, only : erroroutput,nerror,output,string,error

use mod_boundary, only : ncb,nce,NCEMAX,elist
use mod_repatom, only : protected
use mod_qclib, only : next,freein,qgsortr

2.11.1 user_mesh 19

use mod_mesh, only : delaunay,PerturbMesh
use mod_grain, only : NumGrains,GetGrainNumVrts,GetGrainVertex,
& NearestBSite

implicit none

I-- Transferred variables
integer, intent(inout) :: id(ndf,maxnp),

& ix(nen,maxel),
& itx(3,maxel)
real (kind=dp), intent(inout) :: x(nxdm,maxnp),
& f (ndf ,maxnp),
& b(ndf ,maxnp)
character(len=4), intent(in) 1t key
character(len=80), intent(in) :: input

The header begins with a list of modules used by user_mesh. Note the use of the only clause
for all modules indicating the specific variables and routines accessed from the module. This
is good programming practice, both from a readability standpoint and as an aid to the
compiler to detect errors. The important variables and routines in these module are described
in Section 2.1, and Sections 2.3 to 2.9. More details are also available in the comments at

the top of the module files.

Variables passed to user mesh. The variables passed to user mesh (except for key and

input are described in Section 2.2. Here a brief definition is given with additional comments

specific to the user_mesh routine.

e id(ndf ,numnp): (integer) The boundary constraint flag array. This array can be

initialized either here in user_mesh or in user_bcon.

e x(nxdm,numnp): (double precision) The reference coordinate array. The initial x array
must be generated here by the user_mesh routine. Details and useful tools are discussed

below.

e ix(nen,numel): (integer) The connectivity array. The initial ix array must be gener-

ated here by the user_mesh routine. Details and useful tools are discussed below.

e f(ndf,numnp): (double precision) The boundary condition array. This array can be

initialized either here in user_mesh or in user_bcon.

2.11.1 user_mesh 20

e b(ndf,numnp): (double precision) Nodal Displacement Array. This array can be ini-
tialized here in user_mesh or in user_bcon if desired. (By default it is initialized to

zero at the start of the simulation.)

e itx(3,numel): (integer) The adjacency matrix. The initial itx array must be gener-

ated here by the user_mesh routine. Details and useful tools are discussed below.

e key: (character(len=4)) Key passed from the input file command line. Can be used to
implement various options in the mesh generator. By convention, key=’dire’ indicates
that additional input to user_mesh follows the mesh command line. See below under the
heading “Direct input to the user_mesh routine”. Note that this variable should

not be modified by the user_mesh routine.

e input: (character(len=80)) Input data passed from the input file command line. input
can be used to pass character, double precision, integer or logical data directly from
the command line to the user_mesh routine. It is left to the user to parse this data.
Routines in mod_qclib (see Section 2.8) facilitate this as shown below. Note that

this variable should not be modified by the user_mesh routine.

As an example of how the input variable can be parsed, consider the user_mesh routine for

GB_example”. This routine defines the following calling format for the input file:
mesh, ,nx,ny

where nx and ny are the number of divisions along the and y axes. Everything beyond
the second comma will be passed to the user_mesh subroutine in the variable input. For

example, if the input file contains
mesh,,8,8

the variable input passed to user mesh contains ‘8,8’. The following code segment in

user _mesh parses this input into the variables nx and ny:

9See QC Tutorial Guide for more information.

2.11.1 user_mesh 21

integer lower,upper,nx,ny
real (kind=dp) dum

I Parse input

lower = 0

upper = next(lower,input)

call freein(input,lower,upper,nx,dum,1)
lower = upper

upper = next(lower,input)

call freein(input,lower,upper,ny,dum,1)

The function next simply starts from the integer position lower in the string input, and
returns the position of the next ¢,’ or end-of-line character in the string. The routine
freein parses a string between positions lower+1 and upper-1 as either an integer if the
last variable in the list is ‘1’ or a double precision real is the last variable in the list is
€22, If the return value is to be an integer, it is returned in the fourth variable on the
list (‘nx’ or ‘ny’ in this case), while a double precision return value is returned in the
fiftth variable. Another example of a code segment parsing input that also reads in double

precision variables is given in Section 2.11.2.

Note that the text-parser routine freein expects the characters between each pair of
commas (i.e. from lower+1 to upper-1) to be consistent with integer or double precision
formatting. For example, no letters (a-z) should appear in an integer field.

Expected output from the user_mesh routine. The user-routine for mesh generation

must define the following variables:

e numnp: (integer). The number of repatoms in the mesh. This is a global variable in

mod_global.

e numel: (integer). The number of elements in the mesh. This is a global variable in

mod_global.

e ix: (integer). The connectivity matrix, as described above. Note that the constrained

Delaunay triangulator that is provided with QC is a great help in generating this

2.11.1 user_mesh 22

matrix. How to use this triangulator is described under the heading “Constrained

Delaunay triangulation” below.

e itx: (integer). The adjacency matrix, as described above. Note that the constrained
Delaunay triangulator that is provided with QC is a great help in generating this
matrix. How to use this triangulator is described under the heading “Constrained

Delaunay triangulation” below.

e nregion: (integer). It is possible to define a model with several separately meshed
regions. For example, in a nano-indentation simulation, one may wish to mesh the
indenter separately from the indented substrate. The global variable nregion is found
in the mod_global module, and must be defined to be the number of regions. The
default value is set to nregion=1, so for a simple mesh with one region, nothing needs

to be done in the user_mesh routine.

Note that modeling contact problems between two regions requires some care. QC will
only reliably detect contact between two nonlocal regions, so the surfaces expected to

come into contact must be made nonlocal.

e iregion(numnp): (integer). Related to the nregion variable described above, this
array assigns each repatom in the problem to one of the regions to be meshed. Thus
iregion(i) is the region to which repatom i belongs. The default value is set to
iregion(i)=1 for all i, so for a simple mesh with one region, nothing needs to be
done in the user_mesh routine. Once nregion and iregion is set in user_mesh, it will

be kept up to date by the code automatically during subsequent mesh adaption.

e x: (double precision). The reference coordinates of all repatoms, as discussed in the
list of input variables above. Note that the QC normally requires repatoms to lie on
Bravais lattice sites. The requirement is only relaxed for a fully local QC simulation,
in which case the user can set choose to set NodesOnBSites=.false. (see the flag

command). Two items available to the user mesh routine simplify the generation of

2.11.1 user_mesh 23

conforming points. First, there is a subroutine NearestBsite which, given a point in
the simulation plane, returns the nearest Bravais site. (See Section 2.4). Its header is

as follows:

subroutine NearestBSite(u,CheckModel,xa,igrain,iel,x,b,ix,itx)

use mod_global, only : dp,maxel,maxnp,ndf,ndm,nen,nxdm,NodesOnBsites
implicit none

I-- Transferred variables

real (kind=dp) u(ndm), xa(3),x(nxdm,maxnp),b(ndf,maxnp)

integer igrain,iel,ix(nen,maxel) ,itx(3,maxel)
Logical CheckModel

The variables x, b, ix, itx are as previously defined and are not modified by the

routine. The others are:

— u(ndm): (double precision, in). Coordinates of the point. In the 2D QC imple-

mentation, ndm=2.

— CheckModel: (logical, in). If CheckModel=.true., the routine will return the
closest point that is inside the current model boundaries, otherwise it will not
check whether the new point lies in the model. In the user_mesh routine, the
model is in the process of being defined and therefore this flag is typically .false..
Note that if CheckModel=.false. then the variables iel,x,b,ix,itx are not
used by the NearestBSite routine. Thus, dummy arguments can be passed to
the subroutine in this case, which is important when NearestBSite is being used

during initial mesh generation.
— xa(nxdm): (double precision, out), Returned coordinates of the Bravais site.
— igrain: (integer, out), Returned grain number in which the site resides.

— iel: (integer, in/out) : If checkmodel is .true., iel returns the element in
which the returned point sits. Also, iel is used as the element from which to
start searching (breadth-first search) to determine if the point is in the model. It

can be initialized to 0 if an intelligent guess for a starting element is not known.

2.11.1 user_mesh 24

The second item that is useful for generating a set of nodes x that are on lattice sites
is the periodic cell for each grain, as discussed in Section 3.5 of the QC' Tutorial
Guide. This cell is useful because it can be used to “tile” the model with all the possible
lattice sites in space for the given orientation of the grains. This tiling can serve as a
template for choosing a sensible location for each repatom in the mesh. The following
code segments use the routines described in Section 2.4 to extract the cell variables for

grain igrain:

— The number of atom sites in the cell ncell:

integer ncell
call GetGrainNumCell (igrain,ncell)

— The coordinates of the atoms in the cell. cellatom(1:3) contains the coordinates

of the jth atom (j < ncell):

real (kind=dp) cellatom(3)
call GetGrainCellAtom(igrain, j,cellatom)

— The periodic lengths of the cell dcel1(3) in the three coordinate directions:

real (kind=dp) dcell(3)
call GetGrainCellSize(igrain,dcell)

Constrained Delaunay triangulation. Relatively speaking, the selection of a set of

repatoms is a simple task while correctly generating a mesh of these points (i.e. generating
connectivity and adjacency matrices) can be difficult. Therefore, QC includes a constrained
Delaunay triangulator called contri [13, 14]. To use contri, the user needs only to define the
coordinates of all the repatoms in the problem. If the mesh is relatively simple (specifically if
it is a simply-connected convex hull) no more information is needed. For multiply-connected
regions (i.e. with holes) or non-convex outer boundaries, the user must also generate a set
of constrained edges and boundaries for the mesh.

A boundary is made up of a series of edges, each of which is defined by the repatoms at

the start and end of the edge. The edges that define the boundaries may be listed in any

2.11.1 user_mesh 25

order, but the repatoms defining external boundary edges must be listed counter-clockwise
around the boundary, while edges for internal boundaries (holes) must be listed clockwise. In
addition to boundaries, internal edges can also be specified to insure that these edges appear
in the final mesh. For example, it may be desirable that the path of a grain boundary is
closely followed by the edges of the elements in a bi-crystal simulation.

Constrained boundary and edge information is stored in mod_boundary. (See Section 2.3.)

The information that the user must generate before calling the triangulator is as follows:'°

e nce: (integer). The number of constrained edges. For convex hull triangulation, nce=0

e ncb: (integer). The number of constrained boundary edges. For convex hull triangu-

lation, ncb=0. Note that nce must be greater than or equal to ncb.

e elist(2,nce): (integer). The repatom numbers defining each edge. Constrained
boundary edges must appear in the list before any internal constrained edges. Each
edge i goes from repatom elist(1,i) to elist(2,i). As mentioned earlier, boundary
edges can appear in any order but must be listed in their counter-clockwise sense if
they are external boundaries and in their clockwise sense if they are internal boundaries
(holes). There are different ways for ensuring this. One approach that uses the routine
gsortr described in Section 2.8 is to identify all of the nodes on a boundary, sort
them in counter-clockwise fashion (for an outer boundary) and then defined the edges
by connecting the nodes in series. A code segment that does this, taken from the

GB_example!!l, is given below:

real (kind=dp), allocatable :: vtmp(:)
real (kind=dp) xmin,xmax,ymin,ymax,XxX,yy,XcC,ycC
integer i

I Identify nodes lying on the boundaries and sort
I in counterclockwise fashion for constrained Delaunay algorithm

10Gee also the discussion under the heading “The model boundary” below.
HSee QC Tutorial Guide for more information.

2.11.1 user_mesh 26

1 xmax=xmax-0.2_dp*dx

2 xmin=xmin+0.2_dp*dx

3 ymax=ymax-0.2_dp*dy

4 ymin=ymin+0.2_dp*dy

5 nce = 0

6 allocate(vtmp (numnp))

7 do i=1,numnp

8 xx=x(1,1)

9 yy=x(2,1)

10 if (xx.lt.xmin .or. xx.gt.xmax .or.

& yy.lt.ymin .or. yy.gt.ymax) then

11 nce=nce+l

12 if (nce.gt.NCEMAX) then

13 nerror = 1

14 error(1l) = ’nce exceeds NCEMAX in subroutine user_mesh’
15 call erroroutput

16 stop

17 endif

18 elist(1,nce)=1

19 vtmp (i)=datan2(yy-yc,xx-xc)
20 endif
21 enddo

22 call gsortr(nce,elist,vtmp,1.0_dp,NCEMAX,numnp)
23 deallocate(vtmp)

I Finish defining boundary
24 elist(2,nce)=elist(1,1)

25 ncb = nce

26 do i=1,nce-1

27 elist(2,i)=elist(1,i+1)
28 enddo

The domain to be meshed in this case is a simple rectangle with minimum and maxi-
mum dimensions in the x and y directions, xmin, xmax, ymin, and ymax. The spacing
between nodes is dx and dy, so lines 1-4 ensure that the test in line 10 is true for any
nodes lying on the outer boundary (the perimeter of the rectangle). The nodes on the
boundary are added to elist in line 18. For each node i on the boundary, vtmp (i)
computed in line 19, contains the angle to this point from the center of the rectangle
(xc,yc). The boundary nodes are sorted in counter-clockwise order in line 22 using
the routine gsortr. The boundary list is completed in lines 24-27. Note that since
a rectangle is a convex region, the entire procedure of identifying the nodes on the
boundary and sorting them is unnecessary. The default behavior of contri with no

boundary defined would have given the same result. This is only done in this routine

2.11.1 user_mesh 27

as an example.

Once these data are generated (normally within the user_mesh) routine, the triangulator
is executed. In QC, this is done by calling the subroutine delaunay with the following
header:

subroutine delaunay(x,ix,b,f,id,itx)

use mod_global, only : dp,iregion,maxel,maxnp,ndf,nen,neq,
& nregion,numel ,numelast,numnp,nxdm,NeedItx
use mod_output, only : erroroutput,nerror,output,string,error

use mod_boundary, only : IncreaseElist,nce,ncb,elist,active,NCEMAX
implicit none

I-- Transferred variables

integer, intent(inout) :: ix(nen,maxel)

integer, intent (inout) :: id(ndf,maxnp)

real(kind=dp), intent(inout) :: x(nxdm,maxnp),b(ndf,maxnp),
& f (ndf ,maxnp)

integer, intent (out) 11 itx(3,maxel)

where x, ix, b and itx are as previously defined. If the global logical variable DefMesh
is .false. (the default), the mesh is generated using the reference configuration of points
(x), otherwise the deformed configuration is used (x+b). Upon successful completion of this

routine, the matrices ix and itx will be defined.

Symmetric and regular mesh generation. It is often desirable that the orientation of

12 or symmetric as possible.

the triangular elements in a finite element mesh be as regular
The QC program includes a utility routine that can be used by the user mesh routine to
generate regular or symmetric meshes.

The Delaunay triangulation algorithm can be coaxed into producing a regular or sym-
metric mesh by introducing a bias in the nodal locations prior to calling the meshing routine.
For example, a regular square array of nodal points will be meshed with randomly oriented
triangles depending on the numerical precision to which the nodal coordinates are speci-

fied (see Fig. 2(a)). On the other hand, if the square array is slightly sheared so that the

squares become parallelograms, the mesh will become perfectly regular (see Fig. 2(b)). If

12Here regular means that all elements are oriented in the same direction.

2.11.1 user_mesh 28

-200 -200 -200

-400 -400 -400

-800 -800 -800

-1000 L— -1000 ¥~

-1000 —

Figure 2: Three uniform meshes obtained from delaunay depending on whether
PerturbMesh was called and the setting of SymmetricMesh. (a) Random mesh
(PerturbMesh not called, SymmetricMesh=.false.), (b) Regular mesh (PerturbMesh
called, SymmetricMesh=.false.), (c) Symmetric mesh (PerturbMesh called,
SymmetricMesh=.true. with SymmetryDof = 1 and SymmetryValue = 0.0_dp).

the perturbation is selected in a symmetric manner, a symmetric mesh can be obtained (see
Fig. 2(c)).

The QC program provides a utility routine PerturbMesh and several global variables
(SymmetricMesh, SymmetryDof, SymmetryValue) that control the mesh morphology. The
Perturbmesh subroutine header is as follows:

subroutine PerturbMesh(x,perturb)

use mod_global, only : dp,nxdm,maxnp,numnp,

& SymmetricMesh,SymmetryDof ,SymmetryValue

implicit none
I--Transferred variables

logical, intent (in) :: perturb

real(kind=dp), intent(inout) :: x(nxdm,maxnp)
where x is as previously defined and perturb is a logical flag. When perturb=.true.,
the nodal coordinates are modified to produce a bias for the Delaunay algorithm. When
perturb=.false., the opposite bias is applied, canceling the effect of the previous pertur-
bation.

Code segments that produce random, regular and symmetric meshes are shown below.

A random mesh (Fig. 2(a)) is the default behavior obtained from simply calling delaunay:

call delaunay(x,ix,b,f,id,itx)

A regular mesh (Fig. 2(b)) is obtained by applying PerturbMesh with symmetry off:

2.11.1 user_mesh 29

SymmetricMesh=.false.

call PerturbMesh(x, .true.)

call delaunay(x,ix,b,f,id,itx)

call PerturbMesh(x,.false.)
A symmetric mesh (Fig. 2(c)) is obtained by applying PerturbMesh with symmetry on:

SymmetricMesh=.true.

SymmetryDof=1

SymmetryValue=0.0_dp

call PerturbMesh(x, .true.)

call delaunay(x,ix,b,f,id,itx)

call PerturbMesh(x, .false.)
Here, the first three lines are global variables (found in the module mod_global) provided to
the PerturbMesh routine. SymmetricMesh is a logical flag set to true if the symmetric mesh
option is desired. SymmetryDof is an integer that defines the coordinate (1=x or 2=y) used
to define the plane of symmetry and SymmetryValue is a double-precision value defining the
coordinate of the plane of symmetry. The call to PerturbMesh modifies the x values prior
to the call to delaunay, which produces the mesh. Finally, the second call to PerturbMesh
restores the correct values in x. In this example, the nodal points are temporarily sheared
in such a way as to make the elements appear symmetrical about the plane x=0.0_dp.

It is important to note that regular (or symmetric) meshes can only be obtained if the
nodes themselves are regular (or symmetric). Due to the constraint that nodes must lie on
lattice sites, sometimes even arrangements of nodes that appear regular (or symmetric) are
not exactly so as a result of small adjustments to the positions of nodes. To prevent this
problem, nodes for regular (or symmetric) meshes, should be generated to be consistent with

the underlying lattice structure from the start by using the grain repeating cell information

as explained above.

The model boundary. The definition of the mesh, and more specifically the assignment

of the variables ncb, nce, and elist described above also defines the spatial extent of the
model. Prior to the assignment of these variables by the user_mesh routine, there is only the

definition of the regions containing each grain as defined by the grain command. The QC

2.11.1 user_mesh 30

program does not require that the grain shapes match the mesh shape, but every element
must lie inside one or more grains. Thus, it is often convenient to define grains that are much
larger than the intended region to be modeled, allowing the user_mesh routine to effectively
“cut out” a region of this space to define the actual model.

Once the mesh is defined, the list of boundary edges contained in elist defines the true
boundary of the model. This has ramifications for mesh adaption, as any repatoms added
during adaption will lie inside this model boundary.

The model boundary is also used by the QC to determine the location of free surfaces.
Specifically, each boundary segment j stored in the array elist is also associated with a
logical variable active(j) found in the module mod boundary. It is left to the user, during
the execution of the user_mesh routine, to define the active variable for each boundary
segment. If a segment of the boundary is “active” (i.e. active(j)=.true.), this free
surface will trigger a region of nonlocality within a distance PROXFACT*rcut. Thus, the
model will automatically refine the mesh in this region down to the atomic scale and make
every repatom in the region nonlocal. Also see Sections 3.3 and 3.4 for discussions of the
model parameters PROXFACT and SurfOn.

Regions of the model where boundaries are set to be inactive (active(j)=.false.) will
not correctly include surface energetics, but can significantly reduce the computational effort
where these energetics are not expected to have an important effect on the phenomena of
interest. For example, in studying crack tip phenomena, it is sensible to include the surface
effects only for a short distance along the crack faces near the tip, turning the surfaces off
for the majority of the traction free crack faces.

If the user’s mesh is a simply-connected convex region, the constrained Delaunay routine
does not need any defined boundaries to produce the correct mesh of the points. In this
case, the variables nce, ncb and elist are assigned automatically by the program during
the Delaunay triangulation so that the correct model boundary is stored. In this case,

all model boundaries are set to be inactive (active(j)=.false.) unless the user specifies

2.11.1 user_mesh 31

otherwise following the call to the Delaunay triangulator.

Optional output from the user mesh routine. The user may choose to define the

variables f and id either during mesh generation, or during the application of the boundary
conditions in the user_bcon routine. See Section 2.11.2 for an explanation how boundary
conditions are applied in QC.

It is sometimes convenient to pass mesh-specific information to the boundary condition
routine (user_bcon, see Section 2.11.2) that can only be determined at the time of mesh
generation. To facilitate this passage of information, module uservars is included in the
user_APP.f file. As noted earlier, to be compatible with earlier versions of QC it contains

by default the following two variables:!?
e user iparam(10): (integer). Storage for up to 10 integer parameters.

e user rparam(10): (double precision). Storage for up to 10 double precision parame-

ters.

Since both the user_mesh and user_bcon routines use the mod_uservars module, param-
eters stored in these variables during the execution of user_mesh will be accessible to the

user_bcon routine later in the simulation.

Direct input to the user mesh routine. Additional input for the meshing routine can be

listed in the lines immediately following the mesh command in the input file. By convention,
if this is the case, no input should be given on the command line itself and key should be set
to ’dire’. The additional input is read in from the input stream in the user_mesh routine

using Fortran read statements:
read(cmdunit, format-spec) list

where cmdunit is the file handle for the input stream (a global QC variable defined in

mod_global), format-spec is the format specifier (use * for unformatted input), and list is the

130f course the user may opt to add on any additional variables.

2.11.2 user_bcon 32

list of data variables to be read in. For example to read in two integers nx and ny, indicating
perhaps the number of divisions along the x and y directions, the following statement could

be used:
read(cmdunit,*) nx,ny

Each read statement corresponds to one line following the mesh command and as many read

statements as wanted can be used.
2.11.2 user_bcon

The user_bcon routine is called by macro bcon (see Section 4.2) to apply special bound-
ary conditions to the simulation. Before this routine can be discussed it is necessary to
explain how boundary conditions are applied in QC. Two variables in QC are related to the

application of boundary conditions:

e time: (double precision) A scalar measure of the load step. Despite its name, this is
a dimensionless variable that merely serves as a load step counter. It is increment by

macro time that is discussed in Section 4.24.

e prop: (double precision) The value corresponding to time in the proportional load
table (see Section 4.14). This table is a graph relating time to a physical property
prop that is used to defined the boundary conditions. For example, prop could be
the vertical displacement of an indenter in a nanoindentation simulation, the stress

intensity factor in a fracture simulation, the shear strain in a shearing test, etc.

QC automatically uses prop to apply boundary conditions at each load step. Just prior to
invoking the solver, the QC program executes two code segments to assign displacements to
constrained degrees of freedom and external forces to free degrees of freedom:

I Set displacements of constrained nodes
do i=1,numnp
do j=1,ndf
if (1id(j,i)==1) b(j,i) = prop*f(j,i)
enddo

2.11.2 user_bcon 33

enddo

I Set external forces applied to free nodes
do i=1,numnp
do j=1,ndf
if (id(j,i)==0) then
dr(j,i) = propxf(j,i)
else
dr(j,i) = 0.0_dp
endif
enddo
enddo
The variable id(j, 1) indicates whether the j-th degree of freedom of node i is constrained
or free and £(j,1i) is the corresponding normalized displacement of force. See Section 2.2
for a discussion of the variables appearing above.

For simulations where all force and displacement boundary conditions are proportional
the single variable prop, no further boundary conditions need to be specified. In this case
bcon need not appear in the input file and user_bcon can be left as an empty routine
(although it must be present in the user_APP.f file). In other cases, however, more elaborate
boundary conditions need to be applied, and £(j,i) needs to be correctly modified at
every load step so that the above code segment leads to the desired boundary loads and
displacements. The user_bcon routine provides the user with means for applying completely
general and arbitrarily complex boundary condition in these cases.

Another case where user_bcon is necessary is when constructing an initial guess for a
new load step based on the converged solution of the previous load step. Note however that
changing b(j,1i) for a boundary node (one for which id(j,i)=1) inside user_bcon will have
no effect: it is overwritten by the above code segment when the solver is invoked. As such,
f(j,1i) must also be correctly set to impose the boundary displacements consistent with the
initial guess to the solution.

The user_bcon routine is initiated by a bcon statement in the macros stage of the input

file (see Section 4.2). The calling format for this macro is

2.11.2 user_bcon 34

becon[,key] [,datal

where key and data are problem-specific parameters that are passed to user_bcon as ex-
plained below.

The header of a typical user_bcon subroutine is as follows:

subroutine user_bcon(id,x,ix,f,jdiag,str,eps,q,b,dr,db,shp,
& xsj,key,input,flag)

use mod_uservars

use mod_global, only : dp,maxel,maxneq,maxnp,ndf,ndm,nen,nq,nstr,
& numnp ,nxdm

use mod_output, only : output,string

use mod_pload, only : GetLoadPropFact,GetLoadOldPropFact,
& GetLoadTime,GetLoadTimeStep

implicit none

I-- Transferred variables
real (kind=dp), intent(inout) :: b(ndf,maxnp),str(nstr,maxel),

& eps (nstr,maxel) ,q(nq,maxel),
& x (nxdm,maxnp) , f (ndf ,maxnp),
& dr (ndf ,maxnp) ,db(maxneq) ,
& shp(3,nen,maxel) ,xsj(maxel)
integer, intent (inout) :: jdiag(maxneq),ix(nen,maxel),
& id (ndf ,maxnp)
character(len=80), intent(in) :: input
character(len=4), intent(in) 1t key
logical, intent (inout) :: flag

The header begins with a list of modules used by user_bcon. The use of the only clause
is encouraged as a good programming practice (see Section 2.11.1 for more on this). The
important variables and routines in these module are described in Section 2.1, 2.6 and 2.7.
More details are also available in the comments at the top of the module files.

The variables passed to user_bcon (except for key, input and flag) are described in Sec-
tion 2.2. Here a brief definition is given with additional comments specific to the user_bcon

routine including details on how user_bcon normally operates on these variables.

e id(ndf,numnp): (integer) The boundary constraint flag array. This array is set by the
user, either during the generation of the initial mesh in user_mesh (Section 2.11.1) or

here in the user_bcon routine.

e x(nxdm,numnp): (double precision) The reference coordinate array. Note that the x

array should not be modified by the user_bcon routine.

2.11.2 user_bcon 35

e ix(nen,numel): (integer) The connectivity array. Note that the ix array should

not be modified by the user_bcon routine.

e f(ndf,numnp): (double precision) The boundary condition array. This array is set by
the user, either during the generation of the initial mesh in user_mesh (Section 2.11.1)

or here in the user_bcon routine.

e jdiag(neq): (integer) Pointer into the stiffness matrix which is stored in a col-
lapsed banded format. Note that this variable should not be modified by

the user_bcon routine.

e str(nstr,numel): (double precision) Elemental Stress array. This variable may be
useful for an application where the applied boundary conditions vary in response to
the stress in the material. Note that this variable should not be modified by

the user_bcon routine.

e eps(nstr,numel): (double precision) Elemental strain array. This variable may be
useful for an application where the applied boundary conditions vary in response to
the strain in the material. Note that this variable should not be modified by

the user_bcon routine.

e q(ng,numel): (double precision) Elemental internal variable array. Note that this

variable should not be modified by the user_bcon routine.

e b(ndf,numnp): (double precision) Nodal Displacement Array. This variable is typically
modified in the user_bcon routine as a means of applying an initial guess to the solution
of the nonlinear problem at hand. Judicious initial guesses to the equilibrium solution
can significantly enhance convergence rates and prevent nonphysical energy minima

from being reached by the nonlinear solver.

Depending on the problem, the initial guess may simply be the solution field from the

previous load step, or that same previous solution incremented in some sensible way.

2.11.2 user_bcon 36

For example, consider a fracture analysis in which each load step i is characterized

by an applied far-field stress of. In solving for the displacement field u**! due to
stress o'*!, it may be sensible to start from an initial guess of the displacement field
solution u! due to o plus a linear elastic displacement field associated with the change
in the applied stress, Au due to Ao = ¢! — ¢?. The natural place to make this
modification to the displacement field before starting the solution algorithm is in the

routine user_bcon.

Generally, the displacement array can be modified in either a total or incremental man-
ner depending on the simulation details. Total re-assignment of the b array is typically
done by making use of the current proportional load prop, whereas incremental mod-
ifications start from the current displacements stored in b (which, for example, may
be the equilibrium solution from the previous load step) and then add a displacement
increment based on the difference between the current and previous proportional loads,
prop-propol. For example, here is a code segment from user_bcon routine of the the
GB_example given in the QC Tutorial Guide that applies an incremental shear strain

to the system:

1 integer 1i,j
2 real (kind=dp) propfact,propolfact

propfact = GetLoadPropFact ()

propolfact = GetLoadOldPropFact()

do i=1,numnp
b(1,i)=b(1,i)+(propfact-propolfact)*x(2,1i)
if (id(1,i)==1) £(1,1)=x(2,1)

enddo

00 ~NO O W

The query routines GetLoadPropFact and GetLoad0ldPropFact in lines 3—4 (discussed
in Section 2.7) are used to obtained current values of prop and propol that are stored
in the local variables propfact and propolfact. The loop in lines 5-8 increments
the x displacement u, of every node by a shear strain increment proportional to the
y-coordinate of the node,

)

uy, =ul "+ (v =y

2.11.2 user_bcon 37

Here the superscript 7 is a load step counter. In this case prop is interpreted as the shear
parameter v imposed on the system. Note the substitution in line 7 of the y coordinate
into the boundary condition array f () for degrees of freedom with fixed displacement
boundary conditions. This is necessary since any modification to displacement degrees
of freedom for which id(i,j)=1 will be overwritten by the next call to compute the
total energy or solve the system (see the discussion of the application of boundary

conditions above).

e dr(ndf ,numnp): (double precision) Out-of-balance force vector. Note that this vari-

able should not be modified by the user_bcon routine.

e db(ndf ,numnp): (double precision) Nodal displacement increment. Note that this

variable should not be modified by the user_bcon routine.

e shp(nshp,numel): (double precision) Shape functions. Note that this variable

should not be modified by the user_bcon routine.

e xsj(numel): (double precision) Element areas. Note that this variable should

not be modified by the user_bcon routine.

e key: (character(len=4)) Key passed from the input file command line. Can be used to
implement various options in user_bcon. Note that this variable should not be

modified by the user_bcon routine.

e input: (character(len==80)) Input data passed from the input file command line. input
can be used to pass character, double precision, integer or logical data directly from
the command line to the user_bcon routine. It is left to the user to parse this data,

however the following is a useful example of how this can be efficiently achieved.

Suppose that the user has written a bcon routine that, in addition to the key option,
requires 3 data entries: a character filename, an integer index and a double precision

scale. The bcon command appears in the input file as:

2.11.3 user_pdel 38

bcon,key,filename,0,1.0

Everything beyond the second comma will be passed to the user_bcon subroutine as
the input variable. Thus, in this example,

input=‘filename,0,1.0’
The following code segment will effectively parse this input string:

integer lower,upper,next,index,idum
real (kind=dp) scale,dum
character(len=80) input,filename

lower = 0

upper = next(lower,input)

filename = input(lower+1:upper-1)

lower = upper

upper = next(lower,input)

call freein(input,lower,upper,index,dum,1)
lower = upper

upper = next(lower,input)

call freein(input,lower,upper,idum,scale,2)

See Section 2.11.1 for an explanation of the integer function next and subroutine

freein used here.

e flag: (logical) user_bcon flag. flag is a global (static) logical variable reserved for the
user_bcon subroutine. It can be set as the user likes, for example as an indication of
whether the bcon routine is being called for the first time. It is initialized to .false.

once at the start of the simulation.
2.11.3 user_pdel

The routine user_pdel is associated with macro pdel (see Section 4.12) that outputs the
current value of prop (see Section 2.7) and a scalar, user-defined, force measure of the

current applied loading. The calling format for pdel is:

pdel, [key] ,fileprefix[,data]

2.11.3 user_pdel 39

Macro pdel calls user_pdel to computes force. user_pdel has the following header:

subroutine user_pdel(id,x,ix,f,jdiag,str,eps,q,b,dr,db,shp,
& xsj,key,input,force)

use mod_uservars

use mod_global, only : dp,maxel,maxneq,maxnp,ndf,ndm,nen,nq,nstr,
& numnp ,nxdm

implicit none

I-— Transferred Variables
real (kind=dp), intent (inout) :: b(ndf,maxnp),str(nstr,maxel),

& eps (nstr,maxel),q(nq,maxel),
& x (nxdm,maxnp) , f (ndf ,maxnp),
& dr (ndf ,maxnp) ,db(maxneq) ,
& shp(3,nen,maxel) ,xsj(maxel)
integer, intent (inout) :: jdiag(maxneq),ix(nen,maxel),
& id (ndf ,maxnp)
character(len=80), intent(in) :: input
character(len=4), intent(in) 1 key
real (kind=dp), intent (out) :: force

The routine uses mod_global, which contains dimensioning variables for the transferred
arguments, and dp, the double precision kind variables. These variables are described in
Section 2.1. Note the use of the only clause in the use statement. This is encouraged as a
good programming practice (see Section 2.11.1 for more on this). The variables passed to

user_pdel as arguments are defined in Section 2.2, except for the last three that are:
e key: (character(len=4)) The key from the pdel command line.

e input: (character(len==80)) The input string from the pdel command line, including

the fileprefix and [data] exactly as it appears.

e force: (double precision) The scalar measure of the applied force. This is the only
expected output from the routine and is the only external variable that should be

modified by user_pdel.

Typically, the force measure can be extracted directly from the values of prop*f (j,i)
for the degrees of freedom to which forces are applied externally, or from dr(j,1i) for degrees

of freedom that are constrained to fixed displacements. The units of force in QC are derived

2.11.4 user_potential 40

from the energy and length units of the underlying atomistic potentials, typically they are
eV/A.

As an example, here is a code segment from the user_pdel routine of the the GB_example
given in the QC Tutorial Guide:

integer 1

force = 0.0_dp

do i = 1,numnp

if (id(1,i)==1 .and. x(2,1)>0.0_dp) force=force-dr(1,i)

enddo
This routine computes the total force in the x direction for nodes with fixed displacements
that have y > 0. In this problem the model is a rectangular region with the bottom at y =0
held fixed at zero displacement and the top at y = h pulled to the right and held fixed. (See
Section 4.2 and Section 4.2 of the QC Tutorial Guide.) The only nodes with id(1,i)==
and y > 0 are then the nodes at the top of the model. Therefore the force computed is
the total force that must be applied to the top of the model to hold it at the current shear
strain defined by prop.!* One thing to note is that force is computed as the negative of
dr (). This is due to the sign convention adopted for dr.

Note that even though the QC code is a 2D implementation (see Section 1 for more
details), it has a finite thickness in the out-of-plane direction (this thickness can be found
from the variable dcell(3) discussed in Section 3.5 of the QC Tutorial Guide). However
forces in QC are not forces per unit depth as is commonly the case in 2D finite element

codes. In QC they are nodal forces with units of energy per length.
2.11.4 user_potential

The routine user_potential allows the user to define an additional external potential energy,
called user_energy that is added to the total energy of the system. This can be used to

include additional boundary conditions that cannot be included using user_bcon.

4Without the condition x(2,1)>0.0_dp the force computed would be zero, since the load applied to the
top of the model is balanced by the reaction forces at the support.

2.11.4 user_potential 41

WARNING: If a user_energy is defined in user_potential, the user must also add the
gradient of this energy to the out-of-balance force vector dr and the second gradient to
the stiffness matrix tang. Otherwise gradient-based solvers (such as conjugate gradients)
or second-gradient based solvers (such as Newton-Raphson) will fail. It is recommended
to perform a numerical derivative checks using the chec macro (see Section 4.3) to verify
that the forces (chec,forc) and stiffness matrix (chec,stif) are computed correctly when
user_potential is used.

As an example, consider the repulsive force-field approach used to model cylindrical and
spherical indenters proposed by [15]. The idea is to add to the total energy a potential of
the form,

K(R—r")?

N —

P-3

i=1

r*<R
where N is the number of nodes in the mesh, R is the radius of the indenter, K is a stiffness
associated with the repulsive field, and r’ is the distance between the current position of

node i (') and the current position of the center of the indenter (c),
r'=lz' — .

The first and second gradients of P follow as

oP R .
o~ KGE Dl =) (1)
o*P R i i R

In the QC implementation, the variables defining the indenter are stored in module uservars

(see Section 2.11):

module mod_uservars
use mod_global, only : dp

save
public

integer user_iparam(10)
real (kind=dp) user_rparam(10)

2.11.4 user_potential

real(kind=dp) indent_radius,indent_radius2,indent_stiffness,
& indent_orig(2),indent_force(2)=0.0_dp

end module mod_uservars

42

Here indent_radius=R, indent_stiffness=K, and indent_orig(2)=c,, where ¢ is the

original position of the indenter center at the start of the loading. The other variables

are indent_radius2=R? (stored for computational efficiency) and indent_force(2), which

is the force the indenter is applying to the surface (this is returned by user_pdel).

user_potential code implementing the repulsive potential is given below:

use mod_stiff, only : tang,istiff
implicit none

1 subroutine user_potential(id,x,ix,f,jdiag,str,eps,q,b,dr,shp,xsj,
2 & fls,flt,flw)

3 use mod_uservars

4 use mod_global, only : dp,maxneq,maxnp,maxel,ndf,nen,nq,nstr,

5 & numnp ,nxdm,user_energy

6 use mod_pload, only : GetLoadPropFact,GetLoadOldPropFact,

7 & GetLoadTime,GetLoadTimeStep

8

9

I-— Transferred Variables
10 real(kind=dp), intent(inout) :: b(ndf,maxnp),str(nstr,maxel),

11 & eps(nstr,maxel),q(nq,maxel),

12 & x (nxdm,maxnp) , f (ndf ,maxnp) ,

13 & dr (ndf ,maxnp) ,shp(3,nen,maxel),
14 & xsj (maxel)

15 integer, intent (inout) :: jdiag(maxneq),ix(nen,maxel),

16 & id (ndf ,maxnp)

17 logical, intent (in) i1 fls,flt,flw

I-- Local Variables

18 integer i,idf,m,n,is

19 real (kind=dp) r,r2,del(2),grad_node(2),indent_loc(2),R_over_r,
20 & stif_node

21 I update indenter position
22 indent_loc(1) = indent_orig(1)
23 indent_loc(2) = indent_orig(2) - GetLoadPropFact()

24 I compute external potential and forces
25 if (flw) user_energy = 0.0_dp

26 indent_force = 0.0_dp

27 do i=1,numnp

28 del(1:2) = x(1:2,1) + b(1:2,1) - indent_loc(1:2)
29 r2 = del(1)*del(1l) + del(2)*del(2)
30 if (r2<=indent_radius2) then

31 r = sqrt(r2)

The

2.11.4 user_potential 43

32 R_over_r = indent_radius/r

33 if (flw) user_energy = user_energy +

34 & 0.5_dp*indent_stiffness*(indent_radius-r)**2
35 grad_node(1:2)= -indent_stiffness*(R_over_r - 1.0_dp)*del(1:2)
36 indent_force = indent_force + grad_node

37 if (fls) dr(1:2,i) = dr(1:2,i) - grad_node(1:2)

38 if (f1t) then

39 idf = (i-1)*ndf

40 do m=1,2

41 do n=m,?2

42 stif_node = R_over_r/r2*del (m)*del(n)

43 if (m == n) stif_node = stif_node - (R_over_r - 1.0_dp)
44 is=istiff (idf+m,idf+n, jdiag)

45 tang(is) = tang(is) + indent_stiffness*stif_node
46 enddo

47 enddo

58 endif

49 endif

50 enddo

51 return

52 end

The variables id to xsj passed to user_potential contain information on the model (nodal
positions, boundary conditions, mesh connectivity, etc.) and the current state of the sim-
ulation (displacements, stress, strain, etc.). They are described in Section 2.2. Additional

variables passed to user_potential are:
e fls: (logical) Force calculation flag. (True means calculate force.)
e f1t: (logical) Tangential stiffness calculation flag. (True means calculate stiffness.)
e flw: (logical) Energy calculation flag. (True means calculate energy.)

It is important that user_potential respect these flags and not modify variables unless
asked to. The rest of the QC code depends on this convention. The current position of
the indenter is computed in lines 22-23. Note that prop is interpreted as the the vertical
displacement of the indenter downwards. The calculation of the potential energy and its
derivatives is done in the loop over the nodes in lines 27-50. This is largely self-explanatory,

however, two subtleties are worth pointing out:

2.11.5 user_plot 44

e Notice that the gradient grad node(1:2) (9P/0x") is subtracted from dr(1:2,1) in-
stead of being added. This is due to the sign convention of dr, which is defined as the

negative of the gradient of the potential energy.

e From Eqn. (2) it is clear that P only contributes to the four terms (m = 1,2, n = 1, 2)
associated with each of the diagonal terms of stiffness matrix (i.e. terms for which
i = 7). However, note that in user_potential the symmetry of the stiffness matrix
is exploited and only three terms are looped over due to the bounds of n in line 41.
This is important because tang also exploits symmetry and stores only the upper half
and diagonal of the stiffness matrix. In fact, if m>n, the function istiff returns zero
indicating that no such term is stored in tang. For more details on tang and istiff

see Section 2.10.
2.11.5 user_plot

The routine user_plot provides the user with the opportunity to generate an application-
specific plot. user_plot is called whenever a plot,user statement appears in the input file.

The calling format for this statement is
plot,key,filepref, [index], [umag], [scalel], [append] [,data]

where key=user in this case. The variables filepref and append have their usual meanings
for a plot statement (see Section 4.13 for more information). The file filepref Uxxx.plt
is opened and the file handle pointing to it is passed to user_plot. The variables index,
scale and append are also passed to user_plot (see below). In addition, variables specific
to user_plot may follow the append variable at the end of the input list as indicated by
[,data] above.
The header of the user_plot routine is
subroutine user_plot(id,x,ix,itx,f,jdiag,str,eps,q,b,dr,db,shp,
& xsj,index,umag,scale,logic,input,upper)

use mod_uservars
use mod_global, only : dp,maxnp,maxel,maxneq,ndf,nen,nq,nstr,nxdm

2.11.5 user_plot

implicit none

I-— Transferred Variables

real (kind=dp), intent (in)
&
&
&
&
&
integer, intent (in)
&
&
integer, intent (inout)

character(len=80), intent(in)

45

:: b(ndf,maxnp),str(nstr,maxel),

eps (nstr,maxel) ,q(nq,maxel),
x (nxdm,maxnp) , f (ndf ,maxnp),
dr (ndf ,maxnp) ,db(maxneq) ,
shp(3,nen,maxel) ,xsj(maxel),
umag,scale

:: jdiag(maxneq),ix(nen,maxel),

id(ndf ,maxnp) ,itx(3,maxel),
index,logic

1 upper

input

The variables id to xsj contain information on the model (nodal positions, boundary condi-

tions, mesh connectivity, etc.) and the current state of the simulation (displacements, stress,

strain, etc.). They are described in Section 2.2. These variables are passed to user_plot in

case they are needed for the calculations performed there. They should not be modified.

The variables index, umag and scale are defined in Section 4.13. Note that it is up to the

user to use these variables in user_plot in a manner consistent with their definition. (See

subroutine dumpit in module mod _plotting for an example how these variables are used.)

Additional plot-specific variables passed to user_plot are:

e logic: (integer) File handle to an open plot file. Data is sent to this file using standard

Fortran output statements:

write(logic, format-spec) list

where format-spec is the format specifier (use * for unformatted output), and list is

the list of data variables to be written.

e input: (character(len==80)) The input line containing all of the variables and delimiters

after the key parameter (i.e. input = ‘filepref,index,umag,scale,append,data’).

The user may parse this string to obtain additional variables in data specific to

user_plot. See the discussion for the upper variable appearing next.

3.0 Head Stage Commands 46

e upper: (integer) A pointer to the last comma or end-of-line symbol that was processed
in the input line. (This is the comma between append and data.) The user may

continue parsing the string from this point as shown in Sections 2.11.1 and 2.11.2.

3 Head Stage Commands

The following is an alphabetical listing of the commands that are available during the head

stage of the QC simulation. For additional detail, please see the QC' Tutorial Guide.

3.1 Macro ’cons’ : read in potential specific constitutive input

The default module for the cons routine is a module that reads a general EAM [6] potential
from a file in either setfl or funcfl format. These formats are standard with the MD
code DYNAMO [16]. Potentials from other sources can be converted to the setfl format
using the utility program dynpots.f provided with the QC code. The dynpots.f file can
be found in the QC subdirectory Potentials/FortranSource. The QC method expects all
interatomic potential files to have the .fcn extension.

Funcfl files contain only the potential information for a single atom type, while all
pair-potential interactions between dissimilar nuclei are modeled as the geometric mean of
the homonuclear pair interactions. Setfl files contain all the potential information for a
complete alloy set, including the pair-potential interactions between the dissimilar nuclei.
They can also be used for potentials defining a single atomic species.

calling format: cons,key,nfiles,fprefix 1,...,fprefix nfiles
e key:

— ’setf’ : File containing constitutive information is in setfl format.

— ?func’ : Files containing constitutive information are in funcfl format.

e nfiles : (integer) The number of files required to read all the necessary constitutive

information. Note that if the key is ’setf’, this value must be 1.

3.2 Macro ’end ’ : terminate head stage 47

e fprefix_i: (character(len=80)) The file prefix for the name of a file, fprefix_i.fcn,

containing the constitutive information. The number of file prefixes must equal nfiles.

After all the constitutive information has been read in, the cons command computes
several values for each of the previously defined grains in the model. Specifically, it computes
the cohesive energy per unit volume, the initial stresses and the initial elastic moduli for the
infinite, undistorted lattice. The stresses and moduli are given in relation to the global x-
y-z coordinate system, and the moduli are presented in the compact Voigt notation using
a 6 x 6 matrix. These values are often known from atomistic simulations of the same
material and serve as a useful check that the grains and constitutive information have been
read in correctly. The user can access the elastic constants (perhaps in order to apply
boundary conditions in user_bcon) using the routine GetGrainRefStiff in mod grain (see
Section 2.4). The initial stresses in the perfect lattice should be zero. Often, very small
differences between the lattice constant used to define the grains and the optimal lattice

constant can lead to nonzero residual stresses in the lattice.

3.2 Macro ’end ’ : terminate head stage

calling format: end

This command is required to signal the end of the head stage.

3.3 Macro ’fact’ : sets global run factors

There are a number of factors that need to be set by the user at the start of a QC simulation.
This is achieved using the fact command. In a typical input file, a list of these commands
will appear near the start of the file. Factors can be set in any order. Even if the default value
is to be used, it is often useful (for clarity) to include these commands in the simulation.

calling format: fact,key,value

e key:

3.4 Macro *flag’ : sets global run flags 48

— ’prox’ : Proximal nonlocality factor (PROXFACT). See Section 4.20 for more de-

tails.

— ’adap’ : Adaption nonlocal padding factor (ADAPFACT). See Section 4.1 for more

details.
— ’cutf’ : Effective cutoff factor (CUTFACT). See Section 4.20 for more details
— ’epsc’ : Nonlocality criterion strain tolerance (epscr). See Section 4.20 and

Section 3.2 of the QC Tutorial Guide for more details.

e value : (double precision) The factor will be set to this value.
Note: For more information on the run factors, see the file mod_global.f.

3.4 Macro ’flag’ : sets global run flags

The flag command is exactly like the fact command, except that it is reserved for simulation
parameters that are of logical type. These are typically switches that determine whether or
not a particular feature of the QC will be activated for the current simulation.

In a typical input file, a list of flag commands will appear near the start of the file.
Flags can be set in any order. Even if the default value is to be used, it is often useful for
clarity to include these commands in the simulation.

calling format: flag,key,value
e key:

— ’nloc’ : Nonlocal effects flag. (Default, N1ocOn=T)

— ’surf’ : Surface effects flag. See Section 2.11.1 for more details. (Default,

Surf0On=T)

— ’grai’ : Grain boundary effects flag. See Section 3.5 for more details. (Default,

GrainOn=T)

— ’ghos’ : Ghost force correction flag. (Default, GhostOn=T)

3.4 Macro *flag’ : sets global run flags 49

’node’ : Nodes on Bravais sites flag. Note that this flag must be set to T if

nonlocal effects on being included in the simulation. (Default, NodesOnBsites=T)

'prev’ : Element warping prevention flag. (Default, PreventWarping=F) Ele-
ment warping occurs when the deformation is so severe that the volume of an
element becomes zero or negative (the element is turned “inside-out”). This is
not permitted in continuum finite elements and in QC elements touching local
repatoms. However, elements between nonlocal repatoms contain no atoms and
can warp without any non-physical consequences. Typically then, PreventWarping
is set to false. In a fully local simulation, setting this flag to true can be a useful

check for errors in the model.

’defm’ : Perform mesh adaptions in the deformed configuration. (Default,

DefMesh=F)

’dumm’ : Flag indicating that “dummy atoms” are permitted. Dummy atoms are
atoms stored inside local elements near that local/nonlocal interface. They are
required to ensure the nonlocal repatoms see all their neighbors unless the local
elements are fully refined in this region. Usually, allowing dummy atoms permits
more rapid coarsening of the local elements but they will lead to larger ghost
forces at the interface. If this flag is set to false, it forces the adaption routine to
fully refine the local region immediately surrounding any nonlocal region, out to

one cutoff radius of the potentials.

NOTE: If this flag is set to false it may result in premature termination of conju-
gate gradient minimization. The reason for this is that during conjugate gradient
minimization dummy atoms may move into the cutoff radius of nonlocal atoms.
This is detected by periodic neighbor list updates that are carried out. If this
occurs the conjugate gradient routine will exit with a warning. To ensure that
minimization is completed with the DummysAllowed flag set to false, the conju-

gate gradient solver call needs to be placed inside a loop:

3.5 Macro *grai’ : read in grain structure information, initialize grains 20

loop,,b
solve,cg,1.0,10000,1
status,update
convergence,force
next

No change is required for Newton-Raphson minimizations.
(Default, DummysAllowed=T).

e value : logical, true sets the flag to true, turning on the effect it controls. False turns

the effect off.

Note: For more information on the run flags, see the file mod_global.f.

3.5 Macro ’grai’ : read in grain structure information, initialize
grains

calling format: grai,key[,fileprefix]

e key:

— ’file’ : Read the grain structure data from a file called fileprefix.geo.

— ’dire’ : Read the grain structure data from the input stream in the lines following

the grai command.

e fileprefix: (character(len==80)) Name of the file to be read if key="file’. Note

that the program appends the extension .geo to form the filename.

Note: For information on grain structure data format, see Section 3.5 of the QC Tutorial

Guide and subroutine ReadGrainData in the file QC/Code/mod _grain.f.

3.6 Macro ’mate’ : material data input

calling format: mate,key[,nfiles,fprefixl,fprefix2,...]

e key :

— ’file’ : Read the material data from a files whose names appear in the command

line, (fprefixl,fprefix2,...).

3.7 Macro mesh’ : generate mesh 51

— ’dire’ : Read the material data from the input stream in the lines following the

mate command.

e nfiles : (integer) The number of files to be read to obtain all the material definitions

if key="file’.

e fprefix: (character(len=80)) The prefix of the name of the file to be read if key="file”’.
There must be nfiles names in the list. Note that the program automatically appends

the extension .mat to create the filename.

Note: For more detail, see the discussion of this command in Section 3.3 of the QC

Tutorial Guide.

3.7 Macro ’mesh’ : generate mesh (user mesh routine)

calling format: mesh[,key] [,data]

This routine calls a user-supplied routine user_mesh to generate the initial mesh. See Sec-
tion 2.11.1 for a detailed description of this routine. The optional parameters key and data
are passed to user_mesh. By convention key=’dire’ implies that any data to user_mesh
is given in the lines following the mesh statement, otherwise the data is expected to be in
the remainder of the statement that is stored in data. It is up to the user to insure that
user_mesh conforms to these conventions. Upon return from this routine an initial mesh will
have been defined including the coordinates of all nodes and the mesh connectivity.

WARNING: QC only performs limited validation checks on the results of the user_mesh

routine. If this routine is faulty it could results in erratic behavior of the code.

3.8 Macro ’zone’ : define special-attribute zones

calling format: zone,key, [fprefix] [, index]
Special-attribute zones are regions in the model where a user can introduce special constraints

on the nodes. Currently, two possibilities exist. No-adaption zones are regions where no

4.0 Macros Stage Commands 52

adaption is allowed and all nodes are required to be local. These zones are typically placed
to cap nonlocal regions that would otherwise continue to extend throughout the model further
than desirable. An example of this is shown in Section 3.4 of the QC' Tutorial Guide for
a grain boundary. Nonlocal zones are regions where all atoms must be nonlocal. This is a

convenient way for introducing a nonlocal region where it otherwise would not be triggered.
e key :

— ’file’ : Read special-attribute zone data from a file named fprefix.zon.
— ’dire’ : Read special-attribute zone data from the input stream in the lines

following the zone command.

e fprefix : (character(len=80)) Prefix of the file to be read if key="file’. Note that

the program automatically appends the extension .zon to create the filename.
e index:

— 0,1 : No-adaption zone. All nodes in this region must be local. No adaption is

allowed in this region.

— 2 : Nonlocal zone. All nodes in this region must be nonlocal. If there is at least
one node in the zone, it will result in the entire region being refined down to the

atomic scale and made nonlocal.

Note: For information on the special-attribute zone data format, see Section 3.4 of the QC

Tutorial Guide and subroutine ReadZone in file Code/mod_boundary.f.

4 Macros Stage Commands

The following is an alphabetical listing of the commands that are available during the macros

stage of the QC simulation. For additional detail, please see the QC' Tutorial Guide.

4.1 Macro ’adap’ : Automatically adapt the mesh, through mesh refining and coarseningb3

4.1 Macro ’adap’ : Automatically adapt the mesh, through mesh
refining and coarsening

The adap command is the starting point for all mesh adaption, including both mesh refine-
ment and mesh coarsening. Related commands include prot and the mesh command in the
head stage of the simulation. The adaption uses an estimator for the error in the deformation
gradients, based on the error estimator of Zienkiewicz and Zhu [17] and described in more
detail in [3].

Note that the last action of the adap command is a forced call to the status command
to re-compute the repatom statuses. If necessary, this will trigger iterative adaption to make
sure all nonlocal repatoms represent only themselves. See Section 4.20 for more details.

calling format: adap, ,vartol,icoarse

e vartol : (double precision, default=0.075) Adaption criterion trigger value. Any
element with a refinement criterion value greater than vartol will be refined. If coars-
ening is active, then any element that can be removed without creating new elements

which would satisfy the refinement criterion is removed.
e icoarse : (integer, default=0) Specifies whether mesh coarsening is active.

— icoarse=0: indicates coarsening is off.

— icoarse=1: indicates coarsening is on.

4.2 Macro ’beon’ : apply boundary conditions (user bcon routine)

calling format: bcon[,key] [,data]
The bcon command calls a user-supplied subroutine called user_bcon, and permits the user
to define key options and input data as required. As a result, the input for the command
will depend on the user routine. The details of the functions performed by the bcon routine
are also largely dependent on the user’s requirements. For a detailed description of this

routine see Section 2.11.2.

4.3 Macro ’chec’ : Numerical derivative check 54

4.3 Macro ’chec’ : Numerical derivative check

chec computes the first and second derivatives of the total energy numerically and compares
them to the analytically computed values. It is for debugging purposes only, and is helpful
when implementing new potentials or other changes to the code.

Note that some small discrepancies in the stiffness elements will often occur with inter-
atomic potentials in the tabulated form provided with the QC package. This is due to the
interpolation of higher order derivatives of the tabulated potentials. These discrepancies
have not been found to interfere substantially with solution convergence.

calling format: chec[,key] [, code]
e key:

- > or *forc’ : Numerical derivative check of out-of-balance forces. Compares
analytical derivative with numerical derivative. Results are sent to the log file and
the Tecplot® file forcecheck.plt.

Note: macro form must be called before this to set up the out-of-balance

force vector.

— ’stif’ : Numerical derivative check of stiffness matrix. Results are sent to the
log file. Any stiffness matrix components which fail the test are flagged with a

<--—-%x*x marker. Parameter code sets the number of repatoms tested:

x code=0 : Check is carried out for two arbitrary rep atoms, one local and
one nonlocal, i.e. all stiffness matrix items associated with these atoms are
tested. This option should be selected for large meshes where testing the
entire stiffness matrix would be computationally prohibitive. This is the
default.

x code=1 : One local atom and all nonlocal atoms are tested. Use this for

medium sized models.

* code=2 : All atoms are tested. Use this for small models.

4.4 Macro ’clea’ : Re-initialize solution variables. 55

Note: macro tang must be called before this to set up the stiffness matrix.

— ’loca’ : Numerical derivative check of the stresses and moduli computed in the
potential routine for the local limit. Parameter code sets the deformation gradient

for which the test will be done:

x code = 0: The check is done using a randomly selected deformation gradient

hard-wired into the routine. This is the default.
x code = iel : The check is done using the deformation gradient of element
iel.
Note: regardless of the deformation gradient selected by code the test will be
carried out for all grains in model. This means that if code=iel is selected and
there are more than one grains in the model, the deformation of element iel will

also be used to test grains with which that element is not associated.
e code: (integer) See the key-dependent descriptions above.

4.4 Macro ’clea’ : Re-initialize solution variables.

calling format: clea
clea sets the nodal displacement vector b and the last increment in the nodal displacements

db to zero.

4.5 Macro ’conv’ : Loop convergence test

The conv command is used within a loop ... next construct to test for convergence. If
convergence has been achieved, the loop is terminated and the simulation proceeds from the
first command following the next command of the terminated loop.

The conv command can also be used to force a load step to exit. At the start of each
call to the conv routine, the program looks for a file abort.dat in the working directory of
the simulation. If the first line of this file contains a single T (for .true.) a “converged”

signal is returned from the conv command regardless of the current convergence measure.

4.6 Macro ’>dtim’ : set time increment 56

In this way, the user can stop a simulation but still produce, for example, output of the last

incomplete load step.

A related command is tole, which sets the value of globaltol used by the conv routine.

e key:

calling format: conv, [key]

’ > or ’forc’ : converge when out-of-balance force norm is reduced below
globaltol*rnmax where rnmax is the largest force norm encountered in the cur-

rent loop.

’disp’ : converge when the norm of the last displacement increment taken in the

solver is less than globaltol.

>cdis’ : converge when the norm of the last displacement increment taken in the
solver is less than a fraction (globaltol) of the maximum displacement increment

norm encountered in the loop.

>ener’ : converge when the change in energy in the last Newton-Raphson step

is less than globaltol.

>elem’ : converge when the current number of elements is the same as or less
than the number of elements the mesh had the last time conv was called. Used

as a check to see when mesh refinement is no longer occurring.

>adel’ : same as ’elem’, but current number of elements is compared to the

number of elements that existed prior to the last mesh adaption.

’pdel’ : converge when the difference between the current external load (com-
puted by macro ’pdel’) and the external load when conv was last called, is less

than globaltol.

4.6 Macro ’dtim’ : set time increment

calling format: dtim, ,dt

4.7 Macro >form’ : Form the out-of-balance force vector 57

Note that there is no key required for this command, and so the double-comma is required

to denote an empty key field.

e dt: (double precision). Time increment to be used by the time command .

4.7 Macro ’form’ : Form the out-of-balance force vector

calling format: form
The form command computes the out-of-balance forces and total energy for the current

nodal displacements.

4.8 Macro ’ghos’ : Compute ghost forces correction

calling format: ghos

The ghos command computes the ghost force corrections associated with the current mesh,
repatoms statuses and displacements. In all subsequent computations of the out-of-balance
forces, the ghost force corrections will be added as dead loads to minimize the spurious
forces at interfaces between local and nonlocal regions. If the status or adap command
is called after the ghos command, it will generally change the values of the ghost forces.
For this reason, the execution of the status or adapt commands will automatically force a
re-computation of the ghost force correction loads.

The ghost force correction is described in detail in [3]. Note that the magnitudes and
directions of the spurious forces will change as the repatom displacements change, and thus
the ghost forces should in principal be updated occasionally during the simulation. It is left
to the user to determine when these ghost forces need to be updated.

Since the ghost force correction is an approximate fix, there is necessarily some level of
error associated with a QC simulation, even with ghost forces corrected using this command.
The main source of this error lies in the fact that the ghost force correction is only periodically
updated (at all status calls and explicit calls to this ghost command) and added as dead

loads. In fact, every change to the displacement fields during the solution algorithm will

4.9 Macro ’>loop’ : set loop start indicators o8

change the ghost forces slightly, but the lack of a well-defined energy functional incorporating
the ghost forces makes their complete elimination impractical.
In order for the ghos command to have an effect, the GhostOn flag must be set to .true.

during the head stage of the simulation.

4.9 Macro ’loop’ : set loop start indicators

The loop command indicates the start of a loop in the command structure, while the related
command next (Section 4.10) indicates the end of the loop. The current QQC implementation
permits full loop nesting to any depth.

calling format: loop, [1abel] ,nloop

e label : (character) label name for the loop (only used as a guide to the eye - program

does not verify loop-next labels match).

e nloop: (integer) number of times the loop is to be executed unless prematurely termi-

nated due to a “converged” signal from the conv command.

4.10 Macro ’next’ : loop terminator control

The next command indicates the end of a loop (started by a loop command) in the command
structure.
calling format: next[,label]

Description of input variables:

e label : (character(len=4)) label name for the loop (only used as a guide to the eye -

program does not verify that loop-next labels match).

4.11 Macro ’outp’ : output nodal displacements to the log file

calling format: outp

The command outp writes the nodal displacements to the log file.

4.12 Macro ’pdel’ : compute current external load and applied displacement 59

4.12 Macro ’pdel’ : compute current external load and applied
displacement
calling format: pdel, [key] ,fileprefix[,datal
The pdel command is used to produce output of a scalar measure of the applied force

> Tt opens a file fileprefix.pde at its first call and at this

for a given configuration.!
and subsequent calls writes a line of output to the file. The output line consists of two
real numbers: the current value of prop (the proportional load level) and a user-defined
measure of the applied force. The force is computed by the routine user_pdel, which must

be supplied by the user and is documented in Section 2.11.3. More information on prop is

given in Section 4.14. The arguments to the pdel command are:

e key : (character(len=4)) Optional parameter passed to the user routine user_pdel.
This could be used, for example, to select a particular force when the routine has

multiple options.

e fileprefix : (character(len=80), default = 'pdelta’) Prefix of file to which the output
should be written. The program will automatically append the extension .pde to

create the filename fileprefix.pde.

e data : Optional data passed to the user routine user_pdel. This can include a list of
variables separated by commas that will be parsed by user_pdel. See Section 2.11.3

for more information.

4.13 Macro ’plot’ : generate plot files

calling format: plot,key,filepref, [index], [umag | polyfile], [scale], [append]

e key:

- > or ’disp’ : Displacement field plot. The nodal z, y and z displacements

are stored on a finite element mesh plot. For this key, index has no effect.

15The name “pdel” comes from the original use of this feature for plotting the load (P) versus depth ()
in nanoindentation simulations.

4.13 Macro ’plot’ : generate plot files 60

— ’beon’ : Boundary conditions plot. Finite element mesh plot with the following

nodal values:

x index = 0,1 : applied loads.

2 : out-of-balance forces.

*x index

% index = 3 : boundary condition indicator (0 free, 1 constrained).

— ’stre’ : Kirchhoff stress field plot. Finite element mesh plot with the following

nodal values:

x index = 0 : Von Mises effective stress.
* index = 1 : Kirchhoff stress components: 0., 0y, 0.z, Ouy, Ogzy Ty
Notes:

1. Stresses are element quantities that are computed at the element integration
points. The nodal values stored in the plot file are extrapolated and thus

include an additional extrapolation error.

2. Stresses are only computed in elements adjacent to local nodes. No stress

information is available in nonlocal regions.

3. The output stresses are components of the Kirchhoff stress tensor 7 not the
more commonly used Cauchy stress tensor o. See variable str in Section 2.2

for the relation between these stress measures.

— ’stra’ : Lagrangian strain field plot. Finite element mesh plot with the following

nodal values:

% index = 0 : Von Mises effective strain.

* index = 1 : Lagrangian Strain components: €,;, €y, €.z, €y, €xzy €yz-
Notes 1 and 2 for key=’stre’ apply here as well.

— ’ener’: Strain energy density field plot. Nodal values of the strain energy density

are extrapolated from the element integration points. For this key, index has no

4.13 Macro ’plot’ : generate plot files 61

effect. Notes for key="stre’ apply here as well. To plot the energies of individual

nonlocal atoms, the ’repa’ key described below should be used.

— ’ghos’: Ghost force correction plot. The nodal ghost force correction dead loads

are plotted on a finite element mesh. index has no effect.

— ’patc’: Patch plot of the internal element variables. This option allows the
user to view the element variables without the extrapolation errors discussed in
key=’stre’. The generated mesh is patched with each element displaying a
constant value. The displayed information is set by index:

x index = 0 : Mixed plot with generally useful values:
- Strain energy density.

- Eigenvalues of the right Cauchy-Green deformation tensor C = F'F

(where F' is the deformation gradient): A; , Ag, As.
- 04y (XY-component of the Kirchhoff stress tensor).
x index = 1 : Strain Energy Density plot.

x index = 2 : Eigenvalues of the deformation tensor F’ F, (where F is the
deformation gradient). These values are used in the nonlocality criterion and

indicate the degree of deformation in an element.

* index = 3: Kirchhoff stress plot. Plotted values are: 0., 04y, 0.2, Opy, sz,
Oy2

* index = 4 : Lagrangian strain plot. Plotted values are: €, €y, €.z, €2y, €22,
€yz-

— ’repa’: Representative atom plot. Output the nonlocal representative atoms fol-
lowed by the local representative atoms. For each atom its energy and the number
of atoms it represents is included. Following the representative atom information,
the tessellation for the current representation and the model boundaries are added.

For this key, index has no effect.

4.13 Macro ’plot’ : generate plot files 62

— ’atom’: Atomic positions plot. Generates a plot of all atoms in a given polygon.
The polygon vertex coordinates are read from file *polyfile’. The positions of
unrepresented atoms are obtained through finite element mesh interpolation. The

type of plot generated is determined by index:

* index = 1 : normal plot

x index = 2 : "Vitek” plot - In addition to the atomic position, adds infor-
mation on the relative slip between the atoms. This is inspired by Prof. V.

Vitek’s visualizations of screw dislocation cores (See, for example, [18]).

— ’type’: Atomic types plot. Plots the atomic number for each repatom, useful
for models where there are more than one species of atom present. For this key,

index has no effect.

— ’user’: User-specified output generated by the routine user_plot. The param-
eters index, umag and scale are read in and passed to user_plot. The append
setting is respected. Additional user-specified input can be read in after append

if desired. More information on user_plot is available in Section 2.11.5.

e filepref : (character(len=80), default = ’qcplot’) The prefix which will be used to
produce the name of the output file. The plot command builds a unique filename for
each plot produced using four components: the user-defined filepref, a letter code
identifying the file type, a unique, automatically incremented 3-digit number and the
.plt file extension. The key-specific letter codes are:

— > _D’: Displacement (disp) plot.

— ?_B’: Boundary Condition (bcon) plot.
— ’_e’: Strain (stra) plot.

— ’_s’: Stress (stre) plot.

— ?_E’: Energy (ener) plot.

4.13 Macro ’plot’ : generate plot files 63

— ?_G’: Ghost Force (ghos) plot.
— ?_P’: Patched (patc) plot.

— ?_R’: Repatom (repa) plot.

— ?_A’: Atoms (atom) plot.

— 7_t?: Atom Types (type) plot.

— 2 _U’: User-specified (user) plot.

For example, if filepref=qcplot, and the key=disp, the filenames generated would
be qcplot_DO01.plt, qcplot_D0O02.plt, gcplot_DO03.plt etc. each time a disp plot

is generated.

e index : (integer, default=0) A switch modifying the behavior of each of the key

options. The effects of index for each key are detailed above.

e umag : (double precision, default=0.0) used with key=’disp’, *bcon’, ’stre’, ’stra’,
’ener’, ’ghos’, ’patc’ and ’user’. Sets the magnification factor for the displace-
ments added to the nodal reference positions. If umag=0.0, plot will be in the reference
configuration. If umag=1.0, plot will be in the deformed configuration. Other values

of umag will appropriately exaggerate or reduce the current displacement field.

e polyfile : (character(len=80), default="poly.dat’) Only used by key=’atom’. File-
name of the file with the coordinates of the polygon vertices defining the region where

atoms should be plotted.

e scale : (double precision, default=1.0) Used with key=’disp’, ’bcon’, ’stre’,
’stra’, ’ener’, ’ghos’ and ’user’. Sets the magnification factor for the output

variable.

e append : (integer, default=0) If append is set to 1, the code will attempt to append

the output to an existing file of the same name, rather than writing each output to a

4.14 Macro ’prop’ : define proportional load table 64

new file. In append mode, the code searches the home directory for the most recently
written file with the same filepref and 2-character letter code as discussed above,
and appends to that file. If no comparable file has been previously written, a new file

is created.

The append option is available for all plot types. Note that in order for it to be

correctly read, all previous data for the command must be present, even if the default

values are to be used or the data is not relevant to that plot type. Said another way,

the code expects append to be the fifth datum after the key on the command line.

So, for example, setting append mode for a repatom plot type requires the command
plot,repa,filepref, , , ,1

to be used.

Because append is the last datum and it is defaulted to 0, it can be omitted if the

append option is not desired!®.

4.14 Macro ’prop’ : define proportional load table

Loading is incremented in the QC method by variable referred to as the time, despite the
static nature of QC simulations. This time variable is further used to compute a proportional
load variable prop. The prop command is used to define the dependence of the prop variable
on the time variable. This dependence is read in as a set of ordered pairs, between which
QC will linearly interpolate to obtain a piecewise linear function of prop vs time. The prop
versus time curve may contain step functions (i.e. two prop values that have the same time
value). See Section 2.11.2 for an explanation how prop is used in the application of boundary
conditions.

calling format: prop, ,npld, [fileprefix], [time(1),pload(l),time(2),pload(2),...]

Description of input variables:

e npld : (integer) Number of points in proportionality graph.

16The possible exception to this rule is a user plot, where there may be additional data following append.

4.15 Macro ’prot’ : protect existing nodes from being deleted by coarsening 65

e fileprefix : (character(len=80)) Prefix of file containing graph data. The program
will try to open a file called fileprefix.prp from which to read the data. If the

fileprefix is absent, graph data is read from argument list.

e time(i) : (double precision) time coordinates of a set of points on a piecewise linear

time-proportionality graph.

e pload(i) : (double precision) prop coordinates of a set of points on a piecewise linear

time-proportionality graph.

Note that there is no key required for this command, and so the double-comma is required
to denote an empty key field. Note also that if the values are to be read from the argument
list rather than from a file, a second double-comma must explicitly appear to ensure that

fileprefix is interpreted as an empty string.

4.15 Macro ’prot’ : protect existing nodes from being deleted
by coarsening

If the user plans to take advantage of the mesh coarsening features in the adaptive meshing
algorithm, it is usually necessary to define a set of “protected” nodes that will not be removed
by coarsening and hence prevent the essential features of the mesh geometry from being lost.
The prot command provides a simple means to this end by allowing the user to protect
either all existing nodes or all existing boundary nodes in the current mesh.

calling format: prot[,key]
e key :

- > . protect all nodes in the model.

— ’boun’ : protect all nodes on the model boundaries.

4.16 Macro ’repo’ : print out current energy and out-of-balance
forces

calling format: repo

4.17 Macro ’rest’ : read/write restart files 66

This command prints a brief report to the output stream including the current value of the
energy and out-of-balance force norm. The latter quantity is of particular interest since it

should be zero (to within some tolerance) for a converged solution.

4.17 Macro ’rest’ : read/write restart files

calling format: rest,key,fileprefix

e key:

— ’read’ : read stored simulation from a previously written binary restart file.
— ’writ’ or’ > : write simulation data to binary restart file.
— ’txrd’ : read stored simulation from a previously written ASCII text restart file.

— 2txwt’ or’ . write simulation data to ASCII text restart file.

e fileprefix : (character(len=80), default="qc’) Prefix of the restart file name. The
program will automatically append the .res extension to create the filename for binary

restart files or the .trs extension for ASCII text restart files.

Restart files can be used to prevent loss of simulation results in the event that a QC
simulation is terminated unexpectedly, for example due to a power failure. Restart files can
also be used to re-start a run with different simulation parameters. ASCII text and binary
restart files perform the identical function, but text restarts are typically about 3 times as
large as their binary equivalent. The text version should only be used if portability of the
restart file across different platforms is not possible with the binary format.

Each time a restart command is used to write a restart file, the code checks for the
existence of a file fileprefix.res (or fileprefix.trs, as appropriate) in the working
directory. If such a file exists, it is moved to a file fileprefix LAST.res before the new
file is written. In this way, there are up to two restart files saved at a time. Upon a third
attempt to write a restart file with the same name, the same procedure is followed and the

old copy of fileprefix LAST.res is lost.

4.17 Macro ’rest’ : read/write restart files 67

The only important data not stored in the restart file is the stiffness matrix in order to
avoid unnecessarily large files. The stiffness matrix can easily be recomputed after reading
a restart file using the tang command.

A restart file can be read at any point in the macros stage of the simulation, but are
typically read in as the first macros command. Re-starting from a previously written restart
file is best done by using a new input file with a very similar list of commands in the head
stage. Some changes to the commands in the head are possible, others must be used with
caution, and others will not lead to a successful restart.

Some examples of changes to the head stage that are permissible:
1. Changes to some of the fact settings or flag settings.

2. Changes to the constitutive information (using a different interatomic potential), pro-
vided that the lattice parameter of the new potential is identical to that of the original

one.
3. Changes or additions to the no-adaption zones.

4. Increasing the allocated storage for repatoms (maxnp) or elements (maxel), see Section 3

of the QC Tutorial Guide for more details.
Some examples of changes that must be used with caution:

1. Any changes to the mesh generator will be completely ineffectual, as the rest command

will read in the entire mesh from the restart file and overwrite the generated mesh.

2. Changes to the active/inactive status of any grain boundary segments must be accom-
panied by the appropriate adaptive remeshing after the restart file is read in, since the
newly activated grain boundary may be in a region of coarse mesh and cause nonlocal
atoms to represent large volumes of the material. This will lead to an energy functional

that is a very poor approximation to the correct one.

4.18 Macro ’setp’ : store current resultant for comparison in conv,pdel 68

Some examples of changes that will not lead to a successful restart:

1. Changes to the grain definitions. Modifying the orientation or shape of the grains
will generally not lead to a successful restart. Repatoms in the restart file data will no
longer fall on Bravais lattice sites, as required by the simulation, or elements may fall

entirely outside of the newly shaped grains.

2. Changes to the material definitions. Modifying the Bravais lattice will have a similar

effect to that of modifying the grain orientations.

4.18 Macro ’setp’ : store current resultant for comparison in
conv,pdel
calling format: setp
The command setp computes and stores the current value of the user-defined applied force
(using the same user_pdel routine described in Section 2.11.3. Each subsequent call to
conv,pdel will compare the current value of the force to that stored at the last call to setp

to decide if convergence has been achieved.

4.19 Macro ’solv’ : call solver routine

The two solvers available in the QC method are a Newton-Raphson (NR) method and
the Conjugate Gradient (CG) method. Both are called from the same command by using
different key options.

calling format: solv,key,dsmax,maxfn,iprint

Description of input variables:
e key:

— ’nr ’ : Newton-Raphson solver

— ’cg ’ : Conjugate Gradient solver

4.20 Macro ’stat’ : Recompute local/nonlocal representative atom status 69

e dsmax : (double precision, default=1.5) Maximum allowed change in a dof in a single

step, units of length.
e maxfn : (integer, default=10000), limit on simulation.

— maxfn>0 : maximum allowed evaluations of the energy and out-of-balance forces

is maxin.

— maxfn<0 : maximum number of CG iterations is |maxfn.

e iprint : (integer, default = 0) The number of interactions between CG outputs. E.g.,
if iprint=3 output is written every third CG iteration. If iprint=0, no output is

generated.

Note that parameters maxfn and iprint are only used in the CG routine, but they must
be specified for both solver options. This is because the NR routine includes a error trap

that will attempt to use the CG solver in the event of a NR failure.

4.20 Macro ’stat’ : Recompute local/nonlocal representative
atom status

The stat command should be called whenever there is need to check that current repatom
nonlocal /local status is consistent with the nonlocality criterion. However, it can be a slow
process and must be used judiciously to avoid excessive computational time.

A repatom can be given nonlocal status for one of two reasons. First, if it is within
PROXFACT*rcut of any active surface or grain boundary, it will be made nonlocal. Secondly,
it will be made nonlocal if it is in a region of the crystal that is experiencing significant
variation in the deformation gradient on the atomic scale. Details of this criterion can be
found in [3, 19], and is discussed in more detail in Section 3.2 of the QC Tutorial Guide.

The status command also serves to check that the neighbor lists for the current set of

nonlocal repatoms is up-to-date. This is invoked using stat,update as described below. In

4.20 Macro ’stat’ : Recompute local/nonlocal representative atom status 70

this case, the status is only re-calculated if it is deemed that the deformation since the last

neighbor-list computation is such that neighbor lists may have changed.

e key :

calling format: stat[,key]

’ > . compute status of all representative atoms in the model and set up

auxiliary arrays, such as neighbor lists, to speed execution.

’upda’ : check whether stored auxiliary arrays are up-to-date, and whether the
displacements since the last status calculation are too large, making it necessary
to recompute the lists. Note that this key option does not technically check
whether the status, per se, needs to be updated. Rather, this option ensures
that repatoms which currently have nonlocal status also have up-to-date neighbor
lists. The criterion for neighbor list updates is not the same as the criterion for

local /nonlocal status.

Interatomic potentials typically have a distance rcut beyond which it is assumed
that atoms do not interact. The QC code computes and stores a list of all neigh-
bors within CUTFACT*rcut of each atom for the current nodal displacements, and
thus there is a cushion of rpad=(CUTFACT-1) *rcut in the neighbor list. As long
as no other atom moves more than rpad closer to the atom of interest, the neigh-
bor list will include at least all of the neighbors required for a correct energy

calculation.

The ’upda’ option checks the displacement of all atoms since the last neighbor
list update, and triggers a new list computation if the sum of the two largest
displacements (of all the atoms) exceeds rpad. This is a conservative criterion,
ensuring that necessary neighbors are never missing from the lists, but signifi-

cantly reducing the computational time spend on neighbor searches.

4.21 Macro ’stpr’ : print state variables (str,eps,q) 71

Additional discussion of the functions of the status command can be found in Section 4.3

of the QC Tutorial Guide.

4.21 Macro ’stpr’ : print state variables (stress, strain other
elemental quantities)

Writes elemental data to the log file qc.log.
calling format: stpr, [key], [n1], [n2]

Description of input variables:
e key:

- > or ’ stre’ : print stresses.
— ’stra’ : print strains.

— ’inte’ : print internal element variables. See the comments in Code/mod_global.f

for a detailed list of these variables (IEPT, IFPT, ILPT, IGPT).
e ni : (integer, default=1) Lower limit of element range to be printed.
e n2: (integer, default = number of elements) Upper limit of element range to be printed.

4.22 Macro ’syst’ : compute system matrix and right-hand side
concurrently
calling format: syst
The syst command updates the out-of-balance force vector and the stiffness matrix for the

current repatoms, statuses and displacements.

4.23 Macro ’tang’ : form tangent stiffness

calling format: tang
The tang command is like the syst command, except that it only updates the stiffness

matrix and not the out-of-balance forces.

4.24 Macro ’time’ : increment time 72

4.24 Macro ’time’ : increment time

calling format: time, [key], [dtstep | varstp], [tmax]

e key:

-7 > : normal time increment. If dtstep is defined this will be the timestep,

otherwise, time will be incremented by dt, set by macro *dtim’.

— ’vari’ : timestep will equal the fraction (varstp) of the maximum possible

timestep that would cause the first element in the mesh to become inverted.
e dtstep : (double precision) Constant timestep (for key=’)
e varstp : (double precision) Variable timestep factor (for key=’vari’)

e tmax : (double precision) Maximum time, simulation will be terminated when this

time is reached.

4.25 Macro ’tole’ : set solution tolerance

calling format: tole,,globaltol
Note that there is no key required for this command, and so the double-comma is required
to denote an empty key field.

Description of input variables:

e globaltol: (double precision, default=1.e-9_dp) Tolerance used for solver and conver-

gence checks.

References

[1] E. B. Tadmor. The Quasicontinuum Method. PhD thesis, Brown University, 1996.

[2] E. B. Tadmor, M. Ortiz, and R. Phillips. Quasicontinuum analysis of defects in solids.
Phil. Mag. A, 73(6):1529-1563, 1996.

4.25 Macro ’tole’ : set solution tolerance 73

3]

V. B. Shenoy, R. Miller, E.B. Tadmor, D. Rodney, R. Phillips, and M. Ortiz. An
adaptive methodology for atomic scale mechanics: The quasicontinuum method. J.

Mech. Phys. Sol., 47:611-642, 1998.

Ronald E. Miller and E.B. Tadmor. The quasicontinuum method: Overview, applica-
tions and current directions. Journal of Computer-Aided Materials Design, 9:203-239,
2002.

E.B. Tadmor and R.E. Miller. The theory and implementation of the quasicontinuum
method. In Handbook of Materials Modeling, Volume I (Methods and Models), chapter
2.13. Springer Science and Business Media, New York, 2006.

M.S. Daw and M.I. Baskes. Embedded-atom method: Derivation and application to

impurities, surfaces, and other defects in metals. Phys. Rev. B, 29:6443-6453, 1984.

D. Rodney and R. Phillips. Structure and strength of dislocation junctions: An atomic
level analysis. Phys. Rev. Lett., 82(8):1704-1707, 1999.

E.B. Tadmor, G.S. Smith, N. Bernstein, and E. Kaxiras. Mixed finite element and

atomistic formulation for complex crystals. Phys. Rev. B, 59(1):235-245, 1999.

M. Dobson, R. S. Elliott, M. Luskin, and E. B. Tadmor. A multilattice quasicontin-
uum for phase transforming materials: Cascading cauchy born kinematics. Journal of

Computer-Aided Materials Design, 2007. in press.

L.M. Dupuy, E.B. Tadmor, R.E. Miller, and R. Phillips. Finite temperature quasi-
continuum: Molecular dynamics without all the atoms. Phys. Rev. Lett., 95:060202,
2005.

G. Lu, E. B. Tadmor, and E. Kaxiras. From electrons to finite elements: A concurrent

multiscale approach for metals. Phys. Rev. B, 73(2):024108, January 2006.

4.25 Macro ’tole’ : set solution tolerance 74

[12] O. C. Zienkiewicz. The Finite Element Method, volume 1-2. McGraw-Hill, London, 4th

edition, 1991.

[13] S. W. Sloan. A fast algorithm for generating constrained delaunay triangulations. Com-

puters and Structures, 47(3):441-450, 1992.
[14] S.W. Sloan. Contri. FORTRAN subroutine, 1991.

[15] Cynthia L. Kelchner, S.J. Plimpton, and J.C. Hamilton. Dislocation nucleation and

defect structure during surface indentation. Phys. Rev. B, 58(17):11085-11088, 1998.
[16] M. S. Daw and S. M. Foiles. Dynamo version 8.7. FORTRAN code, 1994.

[17] O. C. Zienkiewicz and J. Z. Zhu. A simple error estimator and adaptive procedure for

practical engineering analysis. Int. J. Num. Meth. Engng., 24:337-357, 1987.

[18] V. Vitek. Theory of the core structures of dislocations in body-centred-cubic metals.

Crystal Lattice Defects, 5:1-34, 1974.

[19] R. E. Miller. On the Generalization of Continuum Models to Include Atomistic Features.

PhD thesis, Brown University, 1997.

