
QC Tutorial Guide version 1.4

R. E. Miller and E. B. Tadmor
www.qcmethod.org

October 2011

Contents

1 Introduction 1

1.1 QC Directories and Files . 1
1.2 Running the example . 3

2 QC Input and Output 5

2.1 The QC Input File . 5
2.2 QC Output . 9
2.3 QC File Extensions . 10

3 Stage: head 10

3.1 Lines 3-7: Flag Settings . 13
3.2 Lines 8-12: Factor Settings . 14
3.3 Lines 13-14: Material Command . 16
3.4 Lines 15-27: Zones in which mesh adaption will not be allowed. 17
3.5 Lines 28-62: Grain Definitions . 18
3.6 Lines 63-64: Constitutive information . 26
3.7 Lines 65-66: Mesh Definition . 29
3.8 Line 67: end . 30

4 Stage: Macros 31

4.1 Line 69: Setting the convergence tolerance. 32
4.2 Line 70: Defining the proportional loading schedule. 33
4.3 lines 71-73: Computing the repatom status 34
4.4 Lines 74-76: Generating plot files. 36
4.5 Line 77: Changing the time step, dtime. 37
4.6 Lines 78-91: Load-stepping loop. 38
4.7 Line 79: Applying the boundary conditions: bcon 38
4.8 Lines 80-85: The Newton-Raphson Solver Loop 39
4.9 Lines 86-88: Output . 40
4.10 Line 89: Writing a restart file . 42
4.11 Line 90: Incrementing the time variable . 43
4.12 Line 92: end . 43

5 Stage: stop 43

6 Other Important Features 43

6.1 Models with Multiple, Unconnected Domains 44
6.2 Generating Multiple Plots in a Single Output File 44

7 Other Examples 44

7.1 Nano-Indentation of an Aluminum Single Crystal by a Square Punch 45
7.2 Shearing Contact Between Two Nano-Asperities 50

A Working with the QC Makefiles 50

A.1 Specifying the compiler . 52
A.2 Specifying the inter-atomic potential file . 54
A.3 Cleaning up . 55
A.4 Debugging applications . 55

B QC Timing Study 57

1.0 Introduction 1

1 Introduction

This tutorial takes the user, step-by-step, through an input file for the QC method. The

simulation that is performed by this input file, while relatively simple, illustrates the main

features of QC and emphasizes the important steps in executing a successful QC simulation.

In the last section, a brief description of two other examples provided with the QC release

are also provided.

The input file to be examined in depth here is gb shear.in, found in the QC subdirec-

tory GB-example/Shear. The problem that this particular input file addresses is illustrated

schematically in Fig. 1. The model consists of two fcc Al crystals. The boundary between

them is a perfect twin boundary except for a step, the height of which is equal to three (111)

interplanar spacings. The QC simulation gradually applies a uniform macroscopic shear

strain on the bi-crystal, eventually causing the boundary to migrate. The mechanism of this

migration is the nucleation of two Shockley partial dislocations at the grain boundary step,

followed by the motion of the partials along the boundary.

1.1 QC Directories and Files

First the distribution file QC.tar.gz must be unzipped and untarred:

% gunzip QC.tar.gz

% tar xvf QC.tar

This will create the main QC directory QC. Within this directory are the following subdirec-

tories:

• QC/Code: Main source code.

• QC/Docs: Documentation including this Tutorial and the QC Reference Manual

• QC/Potentials: A library of embedded-atom method potentials and related files. In

this directory, each potential includes three files:

1.1 QC Directories and Files 2

– potential.fcn contains the potential itself in a format that QC can understand.

– potential.mat contains a file that describes the most common material (lattice

structure) associated with the potential. See a discussion of this file in Section 3.3.

– potential.ref is a set of notes reporting various details about the potentials and

their source.

For a comparison of the performance of some of these potentials in fully atomistic

simulations, the user may refer to [12].

• QC/GB-example: This directory contains the user file user gb.f containing an example

of the user-defined routines that must be written for a specific simulation. In this case,

it is the simulation of a stepped grain boundary to be discussed within this Tutorial.

The subdirectory GB-example/Shear contains the input and output from the specific

run to be discussed below.

• QC/Punch-example: An example of nano-indentation by a knife-edged indenter.

• QC/Friction-example: Shearing contact between two nano-asperities.

By convention, the QC directory structure is as follows. Directory names are given an

upper-case first letter, all files are lowercase. Each specific model should have its own parent

directory on the same level as QC/Code, with Makefile and a user APP.f file (where APP is

the application name). Specific simulations of a model should be run in a subdirectory of the

model’s parent directory. In the example provided, the parent directory is QC/GB-example

and the simulation input and output is in QC/GB-example/Shear.

The user APP.f must contain five user-supplied Fortran 90 subroutines that are required

by QC. These are:

• user mesh: This routine produces the mesh. It is called by the mesh command and is

discussed in Section 3.7 and in Section 2.11.1 of the QC Reference Manual.

1.2 Running the example 3

• user bcon: This routine applies the boundary conditions. It is called by the bcon

command and is discussed in Section 4.7 and in Section 2.11.2 of the QC Reference

Manual.

• user pdel: This routine defines a scalar measure of the applied force for a given

boundary condition. It is called by the pdel command and is discussed in Section 4.9

and Section 2.11.3 of the QC Reference Manual.

• user potential: This routines computes the energy (and corresponding force and

stiffness) associated with a user-specified external potential. These contributions are

added to the total energy of the system and its derivatives. This is an alternative

approach to applying boundary conditions. It is discussed in Section 2.11.4 of the QC

Reference Manual.

• user plot: This routine gives the user the opportunity to create specialized plots

for the defined application. It is called by the plot command and is discussed in

Section 2.11.5 of the QC Reference Manual.

Even if some of these routines are not necessary for a particular application (which is normally

the case), the empty routines must be included in user APP.f.

To facilitate the creation of new applications, it is recommended to take an existing appli-

cation as a starting point and to modify it appropriately.

1.2 Running the example

If the convention described above is followed, then all simulations will be compiled and run

in the manner discussed here. The commands given below assume a Unix/Linux operating

system.1 The example simulation presented in this tutorial is executed by first compiling

the QC program from within the QC/GB-example directory:

1The code has been ported in the past to a Windows platform without difficulty, but this is not discussed
here.

1.2 Running the example 4

% cd ~/QC/GB-example

% make QCCOMPILER=COMP

Here COMP is the appropriate compiler for your machine. Currently, the following Fortran

compilers are supported:

• Absoft Fortran 90/95 Compiler (COMP=absoft)

• GNU Fortran (gfortran) Compiler 4.2.0 or higher (COMP=gnu)

• G95 Fortran Compiler (COMP=g95)

• IBM XL Fortran Compiler (COMP=ibm)

• Intel Fortran Compiler (COMP=intel)

• NAGWare Fortran 95 compiler (COMP=nag)

• PathScale Compiler Suite (COMP=pathscale)

• Portland Group Inc. PGF95 Fortran 90/95 Compiler (COMP=pgi)

• Silicon Graphics MIPSpro Fortran 90 version 7.3 or less (COMP=sgi)

• Silicon Graphics MIPSpro Fortran 90 version 7.4 or more (COMP=sgi7.4)

• Sun Forte Developer Fortran 95 (COMP=sun)

Others can be used by adding an appropriate section to Code/Makefile common. See Ap-

pendix A for more details on the QC Makefile architecture.

Successful compilation will produce an executable called gb in the GB-example directory.

To run the example do:

% cd ~/QC/GB-example/Shear

% ../gb < gb_shear.in > gb_shear.out &

2.0 QC Input and Output 5

FCC Al

FCC Al

Stepped Twin Boundary

shear

shear

Figure 1: Schematic of the example simulation, shearing of a stepped twin boundary.

which reads gb shear.in as standard input and sends all standard output to gb shear.out.

This example runs in a few minutes on a state-of-the-art workstation.2

All output files except the restart file discussed below are ASCII. The output files with

a .plt extension can be viewed as mesh plots in Tecplot R©, a commercial data visualiza-

tion software package. Note that the main action of interest occurs between output files

gbshear D008.plt and gbshear D009.plt, where the step migrates one atomic plane up-

wards due to two Shockley partial dislocations moving left and right along the boundary.

2 QC Input and Output

2.1 The QC Input File

The QC user interface is based on the simple command line interface originally provided

with the program FEAP [11]. The advantages of this interface lie in its simplicity, ease of

modification and portability (it requires no graphical capabilities and is written entirely in

Fortran 90). Its main disadvantage is that is can be somewhat rigid in syntax and does not

allow for easy debugging of faulty input. Commands are typically entered in a text input file

(conventionally, but not necessarily, with a .in extension). The first action of the program

2See Appendix B for a list of execution times of the GB-example on a variety of computer architectures
and using a variety of different compilers.

2.1 The QC Input File 6

is to parse the input file into a temporary file called qc.cmd, in which all leading spaces and

comment lines (denoted by a leading %) have been removed. The temporary file is deleted

upon successful termination of the program3, but faulty input files will often lead to an error

message referring to the unit number corresponding to the qc.cmd file.

The commands take the general form:

command[,key][,data]

where key is used for some commands to activate various options. The data is generally a

comma-delimited list of values required for the command, as explained in detail in the QC

Reference Manual.

Note that for commands where no key is required or for which the default key is used,

the commas must still delimit an empty field. In other words, such a command would appear

as

command,,data

with the double-comma required.

Commands and keys are only unique up to the first four characters. Thus, macr and

macros are the same as far as the program is concerned, but the latter form is recommended

for better readability of input files. Commands and keys are not case-sensitive, but char-

acter data passed to commands are case-sensitive. To improve readability of the input file,

indentation can be added using spaces, but tab characters must be avoided. No extra spaces

should appear in the first 4 characters of the key field of the command line. Comment lines

can be added anywhere in the input file by starting the line with a % character.

Commands are grouped into three simulation stages, which must appear in every input

file for the QC program to run successfully. Each stage contains a series of commands, some

of which are required and some of which are optional. The three stages (which must appear

in this order) are: head, macros, and stop.

3The qc.cmd will not be deleted for some compilers that do not allow direct access to operating system
calls from within Fortran. See Appendix A.1 for a discussion of the necessary system subroutine in module
mod nonstandard.

2.1 The QC Input File 7

The head stage of the simulation is predominantly used for the initialization of simulation-

specific variables, memory allocation, and the definition of the materials, constitutive laws

and mesh. Normally, all of the head commands will appear in every QC simulation in the

same order as presented in the following example, but with data and options appropriate to

the simulation of interest.

The macros stage is the heart of the simulation, allowing the user a significant degree

of flexibility in specifying, for example, the application of boundary conditions, the solution

algorithm and the output generated. The macros stage also generally requires the greatest

level of understanding and skill to produce meaningful results.

The final stage, stop, contains no commands and simply signals the program to gracefully

terminate the simulation and stop execution.

The sample input file gb shear.in appears in its entirety here:

1 head Shear Loading of a twin grain boundary with a step

2 2500,5000

3 % initialize flag settings

4 flag,NlocOn,T

5 flag,SurfOn,F

6 flag,GrainOn,T

7 flag,GhostOn,F

8 % initialize factor settings

9 fact,PROXFACT,2.0

10 fact,ADAPFACT,0.0

11 fact,CUTFACT,1.5

12 fact,epscr,0.15

13 % read in material definitions

14 mate,,1,../../Potentials/al_ea

15 % read in the no-adaption zones

16 zone,direct,,1

17 2

18 4

19 -100.d0 -50.d0

20 -100.d0 50.d0

21 -10000.d0 50.d0

22 -10000.d0 -50.d0

23 4

24 100.d0 -50.d0

25 10000.d0 -50.d0

26 10000.d0 50.d0

2.1 The QC Input File 8

27 100.d0 50.d0

28 % read in grain information

29 grains,direct

30 2

31 1

32 -0.823028 2.32787 1.42552727

33 0.0 0.0 0.0

34 -1.0 -1.0 2.0

35 1.0 1.0 1.0

36 0.0

37 20.0

38 8

39 -200.d0 -6.88 F

40 -100.d0 -6.88 T

41 -2.46908 -6.88 T

42 0.0 0.1 T

43 100.d0 0.1 F

44 200.d0 .1 F

45 200.d0 200.d0 F

46 -200.d0 200.d0 F

47 1

48 2.46908 0.0 1.425527271

49 -0.05 0.0 0.0

50 1.0 1.0 -2.0

51 1.0 1.0 1.0

52 0.0

53 20.0

54 8

55 -200.d0 -6.8801 F

56 -200.d0 -200.d0 F

57 200.d0 -200.d0 F

58 200.d0 0.09999 F

59 100.d0 0.09999 T

60 0.0d0 0.09999 T

61 -2.46908 -6.880001 T

62 -100.d0 -6.880001 F

63 % read in constitutive information

64 cons,setf,1,../../Potentials/al_ea

65 % generate a simple coarse mesh

66 mesh,,8,8

67 end

68 macros

69 tole,,1.0d-6

70 proportional,,2,,0.,0.,1000.,1000.

71 % compute local/nonlocal status and automatically

72 % refine nonlocal regions

73 status

2.2 QC Output 9

74 plot,bcon,gbshear,3,1.,1.

75 plot,disp,gbshear,0,1.,1.

76 plot,repatom,repatom

77 dtime,,0.005

78 loop,load,10

79 bcon

80 loop,,200

81 tang

82 solve,nr,1.0,10000,1

83 status,update

84 convergence,force

85 next

86 plot,disp,gbshear,0,1.,1.

87 report

88 pdel,,p-delta

89 restart,write,shear

90 time

91 next,load

92 end

93 stop

Note that the line numbers along the left margin are added only in this document for

reference. In what follows, we will trace through these commands and identify the discuss the

effect of each. Complete details regarding the functionality and options for each command,

as well as all the remaining commands available to QC but not used in this example, are

provided in the alphabetical listing of the commands in the QC Reference Manual.

2.2 QC Output

The QC method sends output in three main places: standard output, the qc.log file and

any user-specified plot files for data visualization (see the pdel and plot commands in

Sections 4.13 and 4.14 of the QC Reference Manual). The main output produced during

the sequential execution of QC commands during a simulation is sent to standard output,

commonly redirected to an output file by running the QC method as:

% qc < file.in > file.out

Here file.in is the input file and file.out will contain the QC standard output. The QC

method writes to the qc.log file, on the other hand, whenever a potentially large list of

data needs to be communicated to the user. This data is written to qc.log rather than to

2.3 QC File Extensions 10

the standard output in order to maintain readability of the standard output file. Whenever

there is an entry written to the qc.log file, it is referenced in the standard output.

Throughout this tutorial, we will draw the reader’s attention to segments of the standard

output or qc.log file as they are generated by the various commands in gb shear.in.

2.3 QC File Extensions

All files that are either read or written by the QC program during a simulation have stan-

dardized three-letter extensions to make is simpler for the user to identify the purpose of

each file. Because the standard three-letter extension is required for every QC file, the user

specifies a file by only the prefix, and the appropriate extension is automatically assumed

by the program. For example, at line 14 of the input file gb shear.in, a material is defined

by reading a file al ea.mat. The command includes only the prefix, al ea, to this file:

mate,,1,../../Potentials/al ea

Since the standard extension for files read by the mate command is .mat, the QC code will

automatically append this extension before trying to open the file.

Table 1 presents a brief description of the function of all the QC file types, their extensions

and the commands that access them. Further detail regarding the function of each file is

provided in the appropriate sections of this tutorial and the QC Reference Manual.

3 Stage: head

The first line of every QC simulation takes the form of line 1 in gb shear.in. The stage

name head, followed by a user-specified header that identifies this particular simulation. The

header may be up to 80 characters long, and must appear entirely on line 1. This line tells

QC to begin the head stage, which in turn expects the second line of the input file to be of

the form:

maxnp,maxel

This line is required for the allocation of an appropriate amount of memory. The entries

3.0 Stage: head 11

File Type Extension Command Function

Material .mat mate Definition of a material.
Special-Attribute Zone .zon zone Geometry of the polygons

defining “special-attribute” zones
(e.g. zones in which mesh adaption
is not allowed or zones where all
all atoms must be nonlocal).

Interatomic Potentials .fcn cons Grids defining the interatomic
potentials, in DYNAMO [1]
setfl or funcfl format.

Grain Geometry .geo grai Grain definitions.
Proportional Load Table .prp prop Table defining the dependence

of the load variable prop

on the time.
Load-Displacement .pde pdel Output file containing the

load vs. displacement data as
defined for a specific
simulation.

Binary Restart .res rest Binary format restart file.
Text Restart .trs rest Text format restart file

(about 3 times larger than
binary files, but portable.
across platforms).

Tecplot R© output .plt plot Tecplot R©-ready output, typically
including the repatoms, mesh
and output data.

Table 1: Standard QC files.

maxnp and maxel are, respectively, the largest number of representative atoms and the largest

number of elements expected during the simulation. These can be difficult to predict if

adaptive remeshing is being used, but programs which terminate due to either value being

exceeded can be easily restarted with a larger allocation if the restart option described

below (in Section 4.10) is used correctly. As a rule of thumb, maxel should be between 1.5

and 2 times larger than maxnp. In this example, QC will allocate storage for 2500 repatoms

and 5000 elements.

The start of the head stage generates the following header in the standard output:

--

3.0 Stage: head 12

q u a s i c o n t i n u u m m e t h o d s i m u l a t i o n

Quasicontinuum (QC) Method: Mixed Continuum and Atomistic Simulation Package

QC Package distribution version 1.4 (November 2011)

Copyright (C) 2003 R. Miller, D. Rodney, M. Ortiz, R. Phillips,

V. B. Shenoy and E. B. Tadmor

Copyright (C) 2004, 2005, 2006, 2007, 2011 R. Miller and E. B. Tadmor

Visit the QC website at www.qcmethod.org

--

Shear Loading of a twin grain boundary with a step

where the last line is an echo of the header provided on line 1 of the input file.

Following the memory allocation parameters on line 2, the input file can contain one or

more of the head stage commands. For most simulations, the commands which appear and

their order should be as presented in this example.

The general format for each command is

command[,key][,data]

where key is a command-specific key that distinguishes between the various options available

to a command. A key that is common to several commands during the head stage is direct.

Several commands have the option of either reading a large amount of data directly from

the input file, or from another auxiliary file. If the dire key appears, the program will read

the subsequent lines of the input file to find the data it needs. Otherwise, the command will

expect the data on the command line to contain the names of one or more files in which to

find the data. The direct option is useful for keeping all the input data for a simulation in

one file. On the other hand, use of separate files can be useful if several simulations require

the same data or if the number of data entries becomes long and affects the readability of the

input file. This will be demonstrated by contrasting the grains and materials commands

later in the following discussion.

3.1 Lines 3-7: Flag Settings 13

3.1 Lines 3-7: Flag Settings

The flag command is used to set various true/false flags for the simulation. A detailed list

of the possible flags, their effect on the simulation and their default values, is provided in

the QC Reference Manual entry for the flag command. The key for the flag command

identifies the variable to be set, and the data is either T or F as appropriate4. The flag

commands can appear in any order and at any point in the head stage of the QC input file.

In this example, the following flags are set:

• Line 4. NlocOn=T: Enables nonlocal repatoms. NlocOn=F runs a purely local simula-

tion.

• Line 5. SurfOn=F: Free surfaces will not trigger nonlocality in this simulation, even

though they should to correctly account for surface energetics. This approach can

be used to reduce the computational effort in simulations where the surface energy

effects are not important to the phenomena of interest. If SurfOn=T then repatoms

within PROXFACT*rcut of active free surfaces will be made nonlocal. The significance

of PROXFACT and rcut is explained below in Section 3.2. Note that for surface effects

to be activated, both SurfOn and NlocOn must be set to T.

• Line 6. GrainOn=T The analogue of SurfOn, for active grain boundaries. For grain

boundaries to trigger nonlocality, both GrainOn and NlocOn must be set to T. This

is the case in this example, where we are interested in studying the details of the

migration of a grain boundary step under applied shear stress.

• Line 7. GhostOn=T Activates the ghost force correction to mitigate spurious forces at

the local/nonlocal interface.

Each call to the flag command generates two lines in the standard output of the form:

4The flag subroutine searches the data for the first incidence of either an “f” or a “t” in upper or lower
case, so other common expressions for true or false can also be used.

3.2 Lines 8-12: Factor Settings 14

setting flag

NlocOn = TRUE

identifying which flag has been set and the value. Note that an unrecognized key sent to the

flag command does not cause termination of the simulation, but rather leads to a warning

issued to standard output of the form:

setting flag

WARNING: flag name "xxxx" not recognized

3.2 Lines 8-12: Factor Settings

The fact command is like the flag command except that it is used to set real-valued factors

instead of true/false flags. A detailed list of QC’s factors, their effect on the simulation

and their default values is provided in Section 3.3 of the QC Reference Manual. The key for

the fact command identifies the variable to be set, and the data is a double-precision real

value to be assigned to the factor. The fact commands can appear in any order and at any

point in the head stage of the QC input file. In this example, the following factors are set:

• Line 9. PROXFACT=2.0: PROXFACT is used to determine the range of nonlocal ef-

fects. During a simulation, a repatom is made nonlocal if any pair of elements within

PROXFACT*rcut of the repatom, where rcut is the atomistic potential cutoff radius,

have significantly different deformation tensors. A “significant difference” is determined

by comparing the difference between the eigenvalues of the elemental right Cauchy-

Green deformation tensor C to the factor epscr defined below5. Specifically, taking

the eigenvalues of C in two elements a and b to be λa
k and λb

k (k = 1 . . . 3), nonlocality

is triggered if

max
a,b;k

|λa
k − λb

k| > epscr. (1)

As well, repatoms are made nonlocal if they are within PROXFACT*rcut of an active

grain boundary or free surface. Note that the flags NlocOn, SurfOn and GrainOn must

be set to true for these nonlocal effects to be activated.

5
C = F

T
F , where F is the deformation gradient. For details, see for example [4].

3.2 Lines 8-12: Factor Settings 15

• Line 10. ADAPFACT=0.0: ADAPFACT is used during adaptive mesh refinement. Elements

within ADAPFACT*rcut of any nonlocal repatom are targeted for adaption whenever the

adap macro is called. This is in addition to adaption triggered by the error norm defined

in the discussion of the adap command in Section 4.1 of the QC Reference Manual.

In this example, since ADAPFACT=0.0, the QC simulation will not use proximity to a

nonlocal repatom as a trigger for element adaption. For simulations where ADAPFACT

is used, it is typically set to 2.0.

• Line 11. CUTFACT=1.5: Each nonlocal repatom requires a list of atoms which, in the

deformed configuration, are within rcut of the repatom for energy and force calcula-

tions. Because the search for neighbors is a computationally expensive process, it is

considerably faster to store a slightly larger sphere of neighbors, within CUTFACT*rcut,

and only update the neighbor lists when the displacements since the last update are

large enough that additional neighbors may have moved into range. In this example,

the effective cutoff is made 50% larger than the actual cutoff radius. See the discussion

of the stat command in Section 4.21 of the QC Reference Manual for more on this

technique of neighbor list storage.

• Line 12. epscr=0.15: The factor epscr is used to determine if a repatom must be

made nonlocal due to significant variations in the deformation gradients around the

repatom. See [5] for details.

Like the flag command, each call to the fact command generates two lines in the

standard output of the form:

setting factor

CUTFACT = 1.500

to echo the user input. Note that an unrecognized key sent to the fact command does not

cause termination of the simulation, but rather leads to a warning issued to standard output

of the form:

setting factor

WARNING: factor name "xxxx" not recognized

3.3 Lines 13-14: Material Command 16

3.3 Lines 13-14: Material Command

The material command is used to define the materials for the simulation. In QC, a “ma-

terial” is very specifically defined to mean a Bravais lattice of three vectors and an atomic

number for the atom associated with each Bravais lattice site. This version of the code is

limited to simple Bravais lattices, i.e. those having a single atom at each Bravais site. The

Bravais vectors are assumed to be in units of length (typically Å) and referred to the global

x-y-z Cartesian coordinate system. The atom type is identified by its atomic number.

In this example, since the direct key has not been specified for the material command,

the material definitions are expected to reside in separate files. The data following the

command key (in this case, the double-comma since no key is present) is a 1 to indicate

that one material file will be read in, followed by the name (without the .mat extension) of

that file: ../../Potentials/al ea. The entire contents of this file appear here:

’Al(fcc) - ea’

0.d0 2.0160413497439759d0 2.0160413497439759d0

2.0160413497439759d0 0.d0 2.0160413497439759d0

2.0160413497439759d0 2.0160413497439759d0 0.d0

13

This data includes a character(len=80) string used to identify the material, followed

by the three Bravais vectors, a1, a2 and a3. These vectors can be non-orthogonal but

should form a right-handed basis set, i.e. (a1 × a2) · a3 > 0. The next line is the integer

atomic number of the atom. In this example, an fcc lattice of aluminum is defined with lattice

constant a0 ≈ 4.032 Å, the value ≈ 2.016 Å being a0/2 in the Bravais vector definitions. This

is the equilibrium, zero-temperature lattice constant for the Ercolessi and Adams potentials

[3] used in this example. Note that one cannot, for example, use a generic “fcc aluminum”

material file. This is because each set of interatomic potentials may give slightly different

values for the lattice constants.

Note that the current release of QC does not permit complex lattice materials, although

this is a topic of ongoing research in an effort to make the QC method more general. Thus,

QC is currently limited to modeling crystals that can be defined by a single atomic number

3.4 Lines 15-27: Zones in which mesh adaption will not be allowed. 17

and Bravais lattice. It is possible, however, to model more than one atom type in the

same simulation. For example, it is possible to look at the phase boundary between an fcc

aluminum grain and a bcc Fe grain. On the other hand, it is currently not possible to look

at a single crystal structure containing both Al and Fe.

The material command echoes the material data to the standard output, for this example,

as follows:

reading material data

opening material data file ../../Potentials/al_ea.mat

material information

Mat # 1 : Al(fcc) - ea

Bravais lattice vectors:

a1 = 0.00000 2.01604 2.01604

a2 = 2.01604 0.00000 2.01604

a3 = 2.01604 2.01604 0.00000

Atomic Species = 13

3.4 Lines 15-27: Zones in which mesh adaption will not be allowed.

In some simulations, it is desirable to restrict the automatic mesh adaption algorithm so

that certain regions are not refined. For example, in grain boundary simulations, the re-

arrangement of the atoms near the grain boundary which will occur to obtain the minimum

energy boundary structure can induce large deformation gradients in the region. This can

trigger repatoms to become nonlocal, which will further trigger adaption of the neighboring

regions. These newly adapted regions will then rearrange to the minimum energy boundary

structure, and the cycle will repeat. The result is that a grain boundary will fully refine itself

along its entire length. This will be computationally expensive and is likely not desirable,

as the reason for using the QC method to study a grain boundary would likely be its ability

to atomistically resolve only select regions of the problem.

To prevent the scenario just described, special-attribute zones where adaption is not

allowed to occur can be defined. Other possibilities for special-attribute zones can exist. In

this case the index 1 at the end of the zone command on line 16 indicates that the defined

zones are no-adaption zones. See Section 3.8 of the QC Reference Manual for more details.

3.5 Lines 28-62: Grain Definitions 18

GB

X (Å)

Y
(Å

)

-200 0 200

-200

-100

0

100

200

Zones of no
adaption

Figure 2: Zones where no adaption will take place, as defined by the zone command.

In this example, a zone is defined at each end of the segment of grain boundary where the

deformation of interest is expected to occur. These zones are shown in Fig. 2. Since the

direct key has been specified on line 16, the data for the zone command appear directly in

the input file. These lines are

• Line 17. nzones. The number of zones to be defined.

• Line 18. nvertices. The number of vertices that will be used to define the first zone.

• Lines 19-22. vertices. The x and y coordinates of the vertices defining the polygon

of the first zone, listed counter-clockwise around the zone. In this example, each of the

two zones is a rectangle.

• Lines 23-27. The same details for the second zone.

3.5 Lines 28-62: Grain Definitions

A grain in the QC method is composed of a material, as defined by the material command,

a rotation which orients the material relative to the global x-y-z axes, and a polygon in the

x-y plane. Grain polygons cannot overlap, and all elements in the mesh (defined later) must

be inside one or more grains (elements which occupy more than one grain will be assigned

3.5 Lines 28-62: Grain Definitions 19

to the grain in which their centroid resides, hence the actual path of the grain boundary will

always follow a set of contiguous element edges in the mesh).

In practice, it is advantageous to define the grain polygons to extend far beyond the

space in which it is anticipated that the elements of the problem will be defined. In this way,

the model mesh can be thought of as having been “cut-out” from a much larger region and

errors of elements lying outside any defined grain can be avoided.

Note that even in a single crystal example, one grain must still be defined. In that case,

the grain serves only to define the orientation of the crystal, as the material occupying it

is normally defined by the material command to have the natural crystal orientation (for

example, an fcc lattice is typically defined by the material command to have the 〈100〉

cube axes along x-y-z, so the grain command is used to re-orient the crystal as desired).

In this way, a material like Ercolessi/Adams [3] fcc aluminum needs to be defined only

once, using the file al ea.mat as read by the materials command, and each simulation can

use this material in conjunction with different grain definitions to produce different crystal

orientations.

It is convenient to define the orientation of a grain using a two-step process. First a

“natural” set of coordinates is defined based on the definition of the Bravais lattice vectors

of the material which will make up the grain. So, for example, if the material is fcc, it may

be convenient to choose the [11̄0] and [111] directions as the natural x and y directions of

the grain. However, if the simulation of interest involves two grains with a small tilt angle

between them, an additional rotation about the z axis is needed to rotate the grains relative

to one another. Hence the second step is to define a rotation of the natural crystal orientation

around the global z axis.

In this simple example, the twin-boundary being considered is naturally defined by

the 〈111〉 and 〈112〉 crystallographic directions aligned parallel and perpendicular with the

boundary plane as shown in Fig. 3(a). However, to consider the slightly different boundary

shown in Fig. 3(b), one would need to specify the cumbersome crystallographic directions

3.5 Lines 28-62: Grain Definitions 20

X (Å)
Y

(Å
)

0 10 20 30 40 50
-20

-15

-10

-5

0

5

10

15

20

[-21,-21,39]

[39,39,42]

[1,1,1]

[1,1,-2]

[39,39,42]

[21,21,-39]

[1,1,1]

[-1,-1,2]

(b)X (Å)

Y
(Å

)

0 10 20 30 40 50

-20

-10

0

10

20

[1,1,1]

[1,1,1]

[1,1,-2]

[-1,-1,2]

(a)

Figure 3: An example grain boundary highlighting details of its construction using the QC
code.

〈21, 21, 39〉 and 〈39, 39, 42〉 to correctly align these grains with the global x and y directions.

However, the grains in Fig. 3(b) are the same as those in Fig. 3(a), but for a rotation of

±2.03o about the z-axis, so it is more convenient to first define the “natural” crystallographic

orientation of Fig. 3(a), and then rotate these grains to their final orientation of Fig. 3(b).

In the example input file gb shear.in, the key direct is specified, so that QC will

expect the grain data to appear immediately following the grains command rather than in

a separate file as was demonstrated with the materials command above. This data, in lines

30-62, includes the following entries:

• Line 30. ngrains. Specifies the number of grains that will be defined for the simu-

lation. In this case, there will be two grains. Lines 31-46 define the first grain, while

lines 47-62 define the second.

• Line 31. material. Specifies the material number (as defined by a previous material

command) that will occupy the first grain.

• Line 32. reference atom. The coordinates (x, y, z) of one atom in the first grain,

chosen as the reference atom, which will be used as the origin of the Bravais lattice

3.5 Lines 28-62: Grain Definitions 21

for the grain. The coordinates of the reference atom must be inside the grain polygon

(defined below).

• Line 33. shift vector. The shift vector can sometimes be helpful in defining the

grain such that the details of the grain boundary structure will be as the user wishes.

The QC will build grain boundaries by constructing the individual grains. In the

regions near the boundary, where atomic scale grain boundary structure is important,

QC will simply include all atoms that are on the Bravais lattice defining the grain

and whose reference (undeformed) position is inside the polygon defining the grain. In

some cases, this may create a boundary structure with atoms that are non-physically

close together. This will happen, for example, when two atoms within neighboring

grains that are both geometrically “inside” their respective grains are both included in

the model despite being only a fraction of an Angstrom apart across the boundary.

The shift vector, xs is one tool at the user’s disposal to avoid this situation and

build the desired grain boundary structure. The vector represents a small translation

that will be applied to an atomic position before the test is performed to check if the

atom is “inside” the grain and therefore to be included in the model. Specifically, in the

process of building all the atomic positions in a grain “A”, QC attempts to include an

atom at position x. To decide whether or not to include this atom, QC tests whether

the point x + xs is inside the polygon defining grain A. If so, an atom is included at

position x. More detail about using the shift vector is provided when discussing

Fig. 4 at the end of this section.

Producing QC simulations in which the grain boundary structure is correct requires

considerable skill and a priori knowledge of what the correct structure should be,

usually gained from small-scale, direct atomistic simulations of the boundary structure.

For more information on computing grain boundary structures using atomistics, see,

for example, [6, 7].

3.5 Lines 28-62: Grain Definitions 22

• Line 34 ‘‘Natural’’ x-axis direction. A vector, referred to the coordinate system

used to define the Bravais lattice of the material (see the material command above)

which points along the crystallographic direction that the user wishes to use to as the

natural x-direction for the grain. In the example of Fig. 3, this is the 〈112̄〉 direction

rather than the 〈21, 21, 3̄9〉 direction.

• Line 35 ‘‘Natural’’ y-axis direction. A vector, referred to the coordinate system

used to define the Bravais lattice of the material (see the material command above)

which points along the crystallographic direction that the user wishes to use as the

natural y direction for this grain. This vector must be orthogonal to the x-axis direction

defined on line 34.

• Line 36, Rotation. As illustrated in the example of Fig. 3(a) and Fig. 3(b), this is a

rotation angle in degrees (positive anti-clockwise) about the z-axis. This rotation takes

the material in the grain from the “natural” orientation defined by the crystallographic

directions of lines 34-35 and rotates it to the final desired orientation with respect to

the global x, y and z directions. In this particular example, the simple twin boundary

being constructed requires no rotation from the natural orientation, so Rotation=0.d0.

• Line 37, crystal radius. Local energy calculations are performed by deforming a

small crystallite according to the current deformation gradient and computing the

energy of a representative atom at its center. This crystallite can be built in advance,

and stored or built at each energy computation. The former approach requires a

conservatively large crystallite to be stored, but is preferable to the latter approach

which significantly increases the computational effort. The crystal radius specifies the

size of the representative crystallite to be stored. Larger crystals will not significantly

slow the computation but will increase the memory requirement of the simulation.

Typically, as in this example, a crystal radius of about three times the cutoff radius of

the atomistic potentials being used is a suitable choice.

3.5 Lines 28-62: Grain Definitions 23

• Line 38, Number of Polygon Vertices. The final data required for the grain defi-

nition is the polygon defining the region of space that will be occupied by the grain.

Thus, this line indicates the number of vertices that will follow to define that polygon.

• Lines 39-46, Polygon Vertices. Each of these lines is the x and y coordinates of a

vertex at the start of linear segment of the polygon defining the grain and the flag “T”

or “F” indicating whether this segment is to be considered active during the simulation.

If a segment is active, it will trigger nonlocality in its vicinity, defined as the region

of space within PROXFACT*rcut of the segment. The vertices must be listed in order,

going counter-clockwise around the polygon.

• Lines 47-62. The details of the second grain.

In this example, we have defined two adjacent grains, with the grain boundary lying

approximately along the plane y = 0. The polygons defining the grain have a small jog in

them near the origin, such that at the atomic scale there will be a step in this boundary of

height 7.0 Å.

The construction of this boundary is elaborated in Fig. 4, where in Fig. 4(a) we show

a segment of the grain polygon, the reference atom of each grain, and the Bravais lattice

vectors of grain 1 (a1, a2, a3) and grain 2 (b1, b2, b3). The filled circles are the atoms

built from the grain 1 Bravais lattice which are included in the model because they fall

inside the polygon for grain 1. The hollow circles are similarly the atoms built for grain

2. The hollow square at the center of the figure illustrates the use of the shift vector, as it

represents an atom that could potentially be part of grain 2, but is explicitly not included

in the model. This is illustrated further in Fig. 4(b), which is a close-up of the hollow

square. For xs = 0, this atom would be included as one of the repatoms in the lower grain.

However, a previous atomistic simulation showed that to include this atom would lead to a

grain boundary structure with higher energy. Thus, by using the shift vector shown, this

atom was not included in the initial configuration of atoms around the grain boundary. The

3.5 Lines 28-62: Grain Definitions 24

X (Å)

Y
(Å

)

-0.2 -0.1 0 0.1 0.2

-0.1

0

0.1

0.2
Grain 1

Grain 2

G
ra

in
Po

ly
go

n

Grain Polygon

xs

Actual position of
candidate atom

Position used to
test if atom is
in Grain 2

(b)X (Å)

Y
(Å

)

-5 0 5

-6

-4

-2

0

2

4

6

Grain 1

Grain 2

Ref. Atom

Ref. Atom

b1, b2

b3

a3

a1, a2

Grain Polygon

(a)

X (Å)

Y
(Å

)

-10 -5 0 5 10
-10

-5

0

5

10

(c)

Grain Polygon

Relaxed Boundary
Location

Figure 4: Details of constructing a grain boundary in QC. (a) The grains are defined by all
Bravais lattice sites lying inside the grain polygon. The square atom at (0,0) is not included
because of the user-defined shift vector as shown in (b). The final relaxed grain boundary
structure is shown in (c), with the original grain polygons shown as a dashed line and the
final location of the boundary shown as the solid line.

3.5 Lines 28-62: Grain Definitions 25

relaxed configuration of the grain boundary, under no applied stress, is shown in Fig. 4(c).

The grai command processes the user-defined grains by computing a number of geometric

quantities. These are echoed to the user in the standard output. For the first grain in this

example, the output is as follows:

==

Grain 1

Material 1 Al(fcc) - ea

Reference Atom at

-0.82303 2.32787 1.42553

Lattice Vectors

-0.40825 -0.40825 0.81650

0.57735 0.57735 0.57735

-0.70711 0.70711 0.00000

Rotation (degrees) 0.00000

Number of vertices = 8

-0.20000E+03 -0.68800E+01 F

-0.10000E+03 -0.68800E+01 T

-0.24691E+01 -0.68800E+01 T

0.00000E+00 0.10000E+00 T

0.10000E+03 0.10000E+00 F

0.20000E+03 0.10000E+00 F

0.20000E+03 0.20000E+03 F

-0.20000E+03 0.20000E+03 F

Cell Structure

Wigner-Sietz Area : 5.7479617393249740

Cell dimensions

4.93827 6.98377 2.85111

Cell Bravais Lattice sites : 6

0.00000E+00 0.00000E+00 0.00000E+00

0.24691E+01 0.00000E+00 0.14256E+01

0.82305E+00 0.23279E+01 0.14256E+01

0.32922E+01 0.23279E+01 0.00000E+00

0.16461E+01 0.46558E+01 0.00000E+00

0.41152E+01 0.46558E+01 0.14256E+01

Radius of representative crystal : 19.957791

Number of atoms in crystallite : 2093

==

A similar output is produced for grain 2. This output includes the direct user input as well

as computed quantities. For example, the Lattice Vectors include the user-specified x and

y coordinate directions, as well as the z direction which is (-0.70711, 0.70711, 0.00000)

in this case. Note that specification of non-orthogonal x and y coordinate directions will

lead to an error message and program termination.

3.6 Lines 63-64: Constitutive information 26

The Cell Structure of each grain includes a computed Wigner-Sietz Area (which is

the 2D projection of the primitive unit cell of the Bravais lattice) and a non-primitive unit

cell of atoms. This non-primitive cell is the smallest periodic cell that is both (a) orthogonal

with the natural axes and (b) able to fully define the grain’s crystal structure. In this

example, this cell contains 6 atoms, as illustrated in Fig. 5.

A word of caution is necessary due to the essentially 2D nature of the QC program.

In this example, the cell dimension along the out-of-plane direction, dz=2.85111, is the

same for the two grains we have defined. This is sensible for grain boundaries like this one,

which is a simple tilt boundary. Note that for many boundaries, the two grains will have

incommensurate periodicities along the out-of-plane direction. The QC will correctly treat

grains with different values of dz, but only insofar as it will correctly compute the energy

and forces on the structure. It is not capable of relaxing the structure in the out-of-plane

direction, which generally would require accommodations such as misfit dislocations with

x− or y− line directions and other deformations where the displacement field varies along

the z direction.

Finally, the user-specified crystal radius is used to compute and store the representative

crystallite, and the number of atoms in this crystallite is echoed to standard output.

3.6 Lines 63-64: Constitutive information

The next segment of the input file defines the constitutive information. In the current im-

plementation of the code, this effectively means the pair-functional embedded-atom method

(EAM) atomic interactions6. There is currently only one module available for the QC

constitutive command, designed to read EAM potentials from a file as described be-

low. In principle, this module (mod poten eam.f) can be replaced to use any other form of

atomistic interactions where the total energy can be written as a sum over individual atom

energies (e.g. three-body interactions). See Appendix A for information on how to change

6Simple pair potentials, without the pair functional terms of the Embedded Atom Method, can be im-
plemented by setting the electron density and embedding energy functions to zero.

3.6 Lines 63-64: Constitutive information 27

Figure 5: The filled circles and dark box are the minimum periodic cell for grain 1 of the
example, while the hollow circles are the periodic copies that produce the crystal struc-
ture. Size of the atom indicates the two different planes of the structure in the out-of-plane
direction.

potentials in the make file.

The existing cons module uses a general EAM potential in one of the formats defined

by the EAM molecular dynamics code DYNAMO [1]. The module accepts a grid of discrete

points to define the functions, which during the simulation are interpolated using Lagrange

interpolations.

In this example, the key setf on line 64 tells the QC that there is a single file containing

all interactions in DYNAMO “setfl” format, whereas func would indicate that a number of

separate material files, in DYNAMO ‘funcfl” format, will follow to define each material. In

the latter case, pair potential interaction between atoms with different atomic numbers are

approximated using the geometric mean of the homonuclear pair potentials [2]. The first

item in the data is a 1 to indicate that one file is to be read in, followed by the filename

(without the .fcn extension): ../../Potentials/al ea. Note that for the setf key, there

can only be one file by definition, but if the func key is used there can be many. In this

3.6 Lines 63-64: Constitutive information 28

example, the file contains the EAM potential data for fcc Al developed by Ercolessi and

Adams [3].

Note that all elements (as denoted by their atomic numbers) used previously to define

the materials in the mate command at lines 13-14 must be assigned appropriate constitutive

data by the constitutive command. Any undefined elements will cause the simulation to

terminate with an error message.

The cons module allows any EAM functions to be used with QC once they have been

converted to either of the funcfl or setfl formats. A utility program, dynpots.f, is

provided with the QC download in subdirectory Potentials/FortranSource and can be

used to convert any EAM functions to the setfl format. See Section 3.1 of the QC Reference

Manual for more information.

The cons command writes the following to standard output:

reading constitutive information

opening constitutive information file ../../Potentials/al_ea.fcn

constitutive information

type element amass alat lattype rcut

---- ------- ---------- ---------- -------- ----------

1 13 28.00000 4.03200 fcc 5.55805

grain reference energy, stress and moduli

==

Grain 1

energy density = -0.2050269616

stress (should be zero)

0.27302E-06 -0.88916E-17 0.17206E-23

-0.88916E-17 0.27302E-06 -0.51617E-23

0.17206E-23 -0.51617E-23 0.27302E-06

elastic stiffness matrix (in grain c.s.) 11 22 33 12 13 23 convention

0.79139 0.35167 0.36999 -0.02590 0.00000 0.00000

0.35167 0.80970 0.35167 0.00000 0.00000 0.00000

0.36999 0.35167 0.79139 0.02590 0.00000 0.00000

-0.02590 0.00000 0.02590 0.19238 0.00000 0.00000

0.00000 0.00000 0.00000 0.00000 0.21070 0.02590

0.00000 0.00000 0.00000 0.00000 0.02590 0.19238

==

3.7 Lines 65-66: Mesh Definition 29

Note the final output from the cons command is the cohesive energy density (energy per

unit volume), initial stress and elastic moduli (in the compact 6×6 Voigt matrix) associated

with a perfect, undeformed crystal of each previously defined grain. These data are a useful

check of the input file. For example, finding the energy to be consistent with the known

value from an atomistic simulation is a necessary (but not sufficient) condition for correct

crystal structure and constitutive data. The initial stresses should be close to zero. If they

are not, this is an indication that the lattice constants defined for the grain may be wrong.

The elastic constants, in units of eV/Å3 are often useful for comparing results to known

elastic solutions.

3.7 Lines 65-66: Mesh Definition

The command mesh calls the user-defined subroutine user mesh in GB-example/user gb.f

to generate the mesh to be used for the simulation. It can be followed by a number of

data lines specific to that mesh generator if the direct key is provided as in this example.

Another example of a mesh generator can be found in QC/Punch-example/user punch.f,

and a discussion of the input and expected output variables for this routine are discussed in

detail in Section 2.11.1 of the QC Reference Manual. In broad terms, the mesh routine must

define the following variables for the QC simulation:

• Reference coordinates of the repatoms. The positions of the initial set of repatoms to be

used in the simulation. This does not discount the possibility of additional repatoms

being added by the adaption routine later.

• Element Connectivity. The mesh routine must define the mesh using 3-node, linear,

triangular elements, such that all repatoms are connected and there are no overlapping

elements. This is facilitated by the inclusion of a constrained Delaunay triangulation

routine [8] with the QC code. Details of how to use this triangulator are found in the

comment lines of subroutines delaunay and contri in Code/mod mesh.f and in the

discussion of the user mesh routine in Section 2.11.1 of the QC Reference Manual of

3.8 Line 67: end 30

(a) (b)

Figure 6: (a) Initial coarse mesh generated by the mesh command and (b) final mesh after
the first status command.

the QC Reference Manual.

• Boundary Constraints. The mesh routine can also be used to identify nodes which

have force or displacement constraints (boundary conditions) applied to them. The

actually application of the forces or prescription of the displacements is left to the

bcon command described later, where the constraints defined here can be modified if

desired.

In this example, a very coarse initial mesh is defined, with the intention of using automatic

mesh adaption to refine it. This approach requires the initial mesh to completely fill the

region of space that the user intends for the model. Automatic mesh adaption later in a

simulation will only add repatoms that lie inside one of the existing elements in the mesh.

The initial mesh generated in this example is shown in Fig. 6(a), while Fig. 6(b) shows the

result of mesh adaption that will be discussed below.

3.8 Line 67: end

The end command tells QC that the first stage, head, is finished.

4.0 Stage: Macros 31

4 Stage: Macros

The macros stage is initialized at line 68 by the macros command, and ends with the end

command at line 93. The macros stage allows the user to control the simulation steps

through such things as applying boundary loads, incrementing the time variable to change

the applied loads, executing the solution algorithm, etc.

In this example, we have (during the head stage) set up the geometry to include a stepped

twin boundary on the plane y = 0 and built a very coarse mesh to define the spatial extent

of the model. In the macros stage we will first adapt this mesh so that it is appropriately

refined in the region of interest near the step in the grain boundary, and then perform 10

load steps in which the externally applied shear strain on the outer boundary of the mesh is

incremented by 0.5% per step. After the external strain has reached 4.0 %, the step migrates

through a mechanism of two partial dislocations running along the boundary.

The main feature of the macros stage that differs from the previous head stage is the

ability for the program to recognize nested loops in the command structure. These loops

are demarcated by a pair of commands: loop to start the loop (and define the number of

times the loop will be executed) and next to end to loop. Finally, a loop can be terminated

before the loop counter has been fully exhausted by an appropriate convergence condition as

identified by the conv command, for example at line 84. Loops may be nested to any depth.

Details of the use and syntax of these loops appear in what follows.

Standard output from the initialization of the macros stage includes a summary of the

important parameters (i.e. factors and flags) set during the head stage, followed by a

list of the macros commands that have been read from the input file. The output for this

example is as follows:

global parameter settings

Number of nodal points (max) = 2500

Number of elements (max) = 5000

Number of spatial dimensions = 2

Number of dofs per node = 3

Number of nodes per element = 3

4.1 Line 69: Setting the convergence tolerance. 32

Number of stress components = 6

Number of internal variables = 14

Critical nonlocality strain = 0.15000

Proximal nonlocality factor = 2.0000

Adaptation nonlocal padding = 0.00000

Effective cutoff factor = 1.5000

Non-locality = ACTIVATED

Ghost Force Correction = OFF

Free surface triggers for non-locality = OFF

Grain Boundary triggers for non-locality = ACTIVATED

Nodes constrained to Bravais sites = ACTIVATED

Prevention of Warped Elements = OFF

Mesh Adaption in deformed configuration = OFF

Dummy atoms allowed = ACTIVATED

macro instructions

[... list of instructions ...]

start of macro execution

For the remainder of the macros stage, each output line has a standard format, as illus-

trated here:

comm key * command-specific output

* command-specific output

* command-specific output

where # is the command number, followed by the command itself (comm) and the key. The

right-most column is reserved for command-specific output. Often, this is simply echoing

the user input, but for many commands there is additional information presented. This field

may also contain references to entries made in the qc.log file if appropriate. Output from

user routines will conform to this output structure if generated through the standard QC

output interface defined in the module mod output. See Section 2.6 of the QC Reference

Manual for details.

4.1 Line 69: Setting the convergence tolerance.

The tole command is used to set the desired convergence tolerance for the simulation.

Because there are no key options for this command, the double-comma must appear to

4.2 Line 70: Define the proportional loading schedule. 33

signify an empty key field. The data for this command is a double-precision real tolerance

value. How this tolerance is used will depend on the solution algorithm that is specified later.

For example, it may be used as a minimum change in atomic positions during a conjugate

gradient step, or as a tolerance on the out-of-balance force norm.

4.2 Line 70: Defining the proportional loading schedule.

Loading is incremented in the QC method by a variable referred to as the time, despite the

static nature of QC simulations. This time variable is further used to compute a proportional

load variable prop. The proportional command is used to define the dependence of the

prop variable on the time variable. There are no key options for the prop command, so

the data follows the double comma. The data consists of an integer identifying the number

of ordered pairs to be read in, followed by either a number of ordered pairs defining the

prop vs. time function or a filename (without the .prp extension) from which to read

these values. If the numbers are entered directly, as in this example, the filename must be

explicitly passed as an empty character string, and thus the second double-comma in the

input.

In this simple example, the function is linear, going from (0.0, 0.0) to (1000.0, 1000.0).

QC will linearly interpolate to find values between the ordered pairs.

In defining the boundary conditions for the problem, the user specifies a set of normalized

displacements and/or forces on boundary nodes, which the QC multiplies by the current

value of prop to determine the current load levels. In this example, a uniform shear strain is

applied as illustrated in Fig. 7. The strain is applied by using fixed displacement boundary

conditions on the nodes along the top and bottom of the mesh. In addition, the initial

displacements for each load step are the solution from the previous step plus a displacement

associated with an incremental uniform shear strain. The normalized displacements on the

fixed nodes ūx are as shown Fig. 7(a). At each application of the boundary conditions during

the simulation, QC uses the current value of the prop variable to scale these variables. For

4.3 lines 71-73: Computing the repatom status 34

_
ux=-197.87

_
ux=197.87

(a)
ux=-19.787

ux=19.787

(b)

Figure 7: (a) Undeformed mesh and the normalized applied displacements stored at bound-
ary nodes at various vertical positions. (b) Resulting displacements when prop=0.10.

instance, at time=0.1 in this example, the proportional load table returns prop=0.1. Thus

the applied displacements, prop×ūx, are as shown in Fig. 7(b). More detail about how to

apply the boundary conditions in the QC method can be found in Section 4.2 of the QC

Reference Manual.

4.3 lines 71-73: Computing the repatom status

The status command performs a number of automatic pre-processing steps that generate a

data structure used during the simulation. The main function, as the name suggests, is to

decide whether each repatom should have local or nonlocal status, but several other steps

are performed as well. Generally, the status command should be called at the beginning

of the macros stage before any major macros commands are invoked (tole and prop do

not depend on status being previously called). It can also be called at other stages of the

simulation to force a re-computation of the repatom statuses. However, the time spent in

this computation is substantial and therefore status calls must be used judiciously. The

functions performed by status are as follows.

After verifying that the user-defined mesh has all repatoms on valid Bravais lattice sites (if

4.3 lines 71-73: Computing the repatom status 35

necessary, i.e. , if NodesOnBSites=.true.), the status command computes the tessellation

of the mesh that will be used to assign sectors of each element to appropriate repatoms. It

then determines the local/nonlocal status of each repatom and computes the initial neighbor

list of each nonlocal repatom. Details of these processes can be found in [9, 5]. Standard

output from this command includes a report of the number of local and nonlocal atoms:

* Status recomputed: #Nonlocal = 746 #Local = 387

The status command then checks that each nonlocal repatom is representing only itself in

the problem, i.e. that its tessellation cell contains only one atom. If this is not the case,

the status command iteratively adapts the mesh by subdividing all elements which touch

nonlocal repatoms. After each mesh refinement, statuses are recomputed and the process is

repeated until all nonlocal repatoms represent only themselves. The effect of this adaption

is shown in Fig. 6(b). In Fig. 6(a), the initial mesh created by the previously discussed mesh

command is shown prior to adaption. In Fig. 6(b), the final mesh is shown. Notice that the

active segment of the grain boundary has triggered a fully refined mesh along its length, but

the inactive segments have not. In this way, full atomic-scale boundary structure and details

are only included in the region of interest near the grain boundary step.

Next, status assigns each element in the mesh to one of the grains previously defined.

This is achieved by determining the grain in which the element’s centroid resides, and assign-

ing the element to this grain. As a result, the actual grain boundary in a coarse mesh may

not follow the user-specified grain boundary very closely. This can be improved, if desired,

through careful mesh design and the use of constrained element edges. See the discussion of

the user mesh routine in Section 2.11.1 of the QC Reference Manual for more details.

Finally, if the ghost force correction is being used (GhostOn=.true.), the status command

computes and stores the ghost forces for the current mesh, statuses and displacement field.

See Section 4.8 of the QC Reference Manual for more details.

4.4 Lines 74-76: Generating plot files. 36

4.4 Lines 74-76: Generating plot files.

The plot command generates various output files which are in a format that can be directly

read by Tecplot R©. There are several key options for the plot command that allow a variety of

data to be plotted. For example, on line 74, the bcon key will produce a plot of the repatoms

and mesh, with data at each repatom identifying whether it is a constrained boundary node

or a free node.

Following the key, the first entry in the data for the plot command is a fileprefix, to

which will be appended a unique file identifier. For this example, the plot on line 74 will

produce the file gbshear B001.plt. This incorporates four elements into the filename: the

user’s chosen file prefix, gbshear, a letter code, B, identifying the type of plot produced,

an automatically incremented 3-digit number uniquely identifying this file, and the .plt file

extension identifying this as a plot file. If the plot command is called again with the bcon

key during the simulation, the label will be incremented to gbshear B002,plt, and so on.

This automatic increment in the file name is of the greatest use for plot commands inside

loops (discussed below) where it is not possible for the user to give each output file a unique

file prefix. The letter codes for the types of plot files found in this example are B for the

bcon plot-type, D for the disp plot-type on line 75 and R for the repa plot-type on line 76.

A complete listing of the plot-types is provided in Section 4.14 of the QC Reference Manual.

Each call to the plot command leads to a line in standard output of the form:

6 plot disp * Opening formatted file: gbshear_D001.plt

to inform the user of the filename currently being used. Cross-referencing between standard

output and the names of the generated output files allows the user to determine which files

are from which stages of the simulation.

Details of the numerous key options for the plot command are provided in Section 4.14

of the QC Reference Manual. In this example, Line 74 produces a mesh with boundary

condition data at each node, line 75 produces a mesh with the displacements at each node,

4.5 Line 77: Changing the time step, dtime. 37

Close up of
central region

Figure 8: The repatoms and the tessellation which determines the regions of the crystal that
each atom represents. Open circles are local repatoms, Filled circles are nonlocal repatoms.

and line 76 produces a file that graphically presents the details of the repatoms, statuses and

tessellation.

The result of line 76 is the file repatom R001.plt, which contains four Tecplot R© “zones”.

These are shown in Fig. 8. The first zone, shown as filled circles, is the reference configu-

ration of all non-local repatoms. The second zone, shown as open circles, is the reference

configuration of all local repatoms. The third zone is plotted using a mesh in which trian-

gular elements are collapsed to lines to draw the tessellation, i.e. it shows the region of the

crystal that is represented by each repatom. The final zone presents the model boundary,

and is shown in the figure as the bold line.

4.5 Line 77: Changing the time step, dtime.

The dtime command simply assigns a numerical value to the dt variable in QC, which is

the current value of the time step. In subsequent calls to increment the time variable, dt

will be used as

time = time + dt

4.6 Lines 78-91: Load-stepping loop. 38

4.6 Lines 78-91: Load-stepping loop.

The loop command takes the form

loop,[label],nloop

where the label is an optional identifier that improves the readability of the input file

and nloop is the number of times the loop will be executed (unless it is terminated before

completion due to a convergence signal from the conv command). The loop command must

be followed, somewhere later in the input file, by a next command as on line 91. Note

that the next command also has an optional label, and it convenient to use this label in

the loop and next commands to identify where loops start and end. The QC program

completely disregards the label for these two commands: it is only used to improve input

file readability. Indentation, as in this example, can also be used to this end.

The loop between lines 78 and 91 serves to run the simulation 10 times, incrementing

the time variable in each loop by steps of 0.005 from 0.000 to 0.045. The loop applies

the boundary conditions, minimizes the energy using the Newton-Raphson solver, produces

output and then increments the time before repeating the process. The commands within

this loop are discussed in the following.

4.7 Line 79: Applying the boundary conditions: bcon

The command bcon calls the user-defined routine user bcon which applies the boundary

conditions for a given level of the proportional load variable prop. Often, the bcon routine

is used to modify the displacements of all the repatoms (not just the boundary atoms) to set

them to what the user may judge as a good initial guess to the correct equilibrium solution.

Because QC problems can be highly nonlinear, this step can be considerably useful to ensure

rapid convergence and to avoid non-physical solutions.

In this example, the boundary conditions are simply a fixed displacement on the top and

bottom faces of the bi-crystal, consistent with a uniform shear strain equal to the current

value of the prop variable. The initial guess is the solution from the last converged load step,

4.8 Lines 80-85: The Newton-Raphson Solver Loop 39

plus the uniform shear strain associated with the strain increment that is applied (0.005).

This modification to the displacement field is also made by the user bcon subroutine. More

detail about how the QC method treats boundary conditions can be found in the bcon entry

in Section 4.2 of the QC Reference Manual.

4.8 Lines 80-85: The Newton-Raphson Solver Loop

This loop is the standard format for use of the Newton-Raphson (NR) solver provided with

QC. The loop command specifies the maximum number of NR iterations that will be at-

tempted before aborting the solution. A value of 200 iterations is quite large and should

usually be adequate. However, critical load steps, such as those in which dislocations are

nucleated and propagate over long distances, can often take in excess of 100 NR iterations

to reach convergence.

Each pass through the solver loop updates the tangent stiffness matrix using the tang

command. This matrix is essentially the second derivative of the energy functional with

respect to all repatom displacements. The matrix is then inverted by the solve command,

which also uses this inverted matrix to compute a NR increment to the displacement vector.

The actual step is set using a line search routine with adaptive backtracking (see the file

mod solve.f for details). Standard output from these two commands are as follows

11 tang * Bandwidth optimization

maximum node degree = 133

stiffness matrix memory = 1161768

12 solv nr * Newton-Raphson step

en = 0.30193E+01 rn = 0.26308E+01 (INITIAL)

en = 0.27630E+01 rn = 0.17306E+01 stp = 0.39686E+00

where the output from the tang command provides information on the size of the stiffness

matrix and the output from solv allows the user to watch the convergence progress of

the load step. The output includes the current energy (en) and out-of-balance force norm

(rn). The final entry, stp, is an indication of the efficiency of the NR method. The solv

command computes a displacement increment based on a linearized approximation to the

4.9 Lines 86-88: Output 40

energy functional. It then applies the largest fraction of that increment possible without an

increase in the value of the actual energy functional. Thus, in a truly linear region of the

configuration space, this stp would always be equal to unity, while a nonlinear problem may

have to take significantly smaller fractions to account for differences between the linearized

energy functional and the actual energy functional being minimized.

Line 83, the status command, is used to recompute the local/nonlocal status of the

repatoms, but because the key=update, status is only re-computed if the displacements

have changed significantly since the last status computation. “Significant” displacements

are defined specifically in the status command details in Section 4.21 of the QC Reference

Manual, based on a conservative estimate for the possibility of either new large deformation

gradients or large motion of atoms such that neighbor lists must be updated. The output of

each call will include the observed and allowable displacements as follows:

13 stat upda * Status update check: Observed = 0.553 Allowed = 2.779

When the displacements since the last neighbor-list update are larger than the allowed

displacement, the output signals this and indicates the new statuses and neighbor-lists:

13 stat upda * Status update check: Observed = 3.957 Allowed = 2.779

** Update Triggered **

* Status recomputed: #Nonlocal = 747 #Local = 386

* Generating atom lists.

The last command of the NR solver loop is the conv command on line 84. Here, the key

is force, so the conv command will check for convergence based on the smallness (compared

to the tolerance set earlier) of the out-of-balance force norm. If the solution is converged,

the loop is terminated and the simulation moves to line 86 of the input file. Otherwise, the

loop starting at line 80 is repeated.

4.9 Lines 86-88: Output

Upon reaching line 86, the solution has converged for the current time step (unless the

maximum number of NR iterations has been exceeded). Thus, lines 86-88 produce three

4.9 Lines 86-88: Output 41

items of output for each load step: a plot of the deformed mesh, a report of the model

energy and an entry in the load-displacement file.

The first output is a plot of the deformed mesh of the repatoms and elements, to-

gether with the displacements at each nodal point. The filename gbshear D will be aug-

mented by a numerical label after each output, gbshear D001.plt, gbshear D002.plt,

gbshear D003.plt, etc.

The second item, produced by the report command at line 87, is written to standard

output and lists the current value of the strain energy, external work and the out-of-balance

form norm:

17 repo * Current energy and forces:

Strain energy = 2.038179179

External work = 0.000000000

Potential energy = 2.038179179

Out-of-balance force norm = 0.6840353005E-08

Note that the External work will only be non-zero for simulations with applied external

loads, in contrast to the current simulation which uses prescribed displacement boundary

conditions.

The third item of output for each load step is produced by the pdel command at line

88, which adds a line to the output file p-delta.pde. Note that the filename specified in

the command line is p-delta, and the .pde extension is automatically appended by the

program. This output contains two real numbers: the current value of the proportional load

prop, and a user-defined scalar measure of the applied force. Typically, this is useful for

producing applied force vs. displacement, or P − δ, curves.

For a given simulation, the user can determine a suitable scalar measure of the ap-

plied force and write the user pdel routine. In this example, the routine is found in

QC/GB-example/user gb.f, where the scalar measure is the sum of the absolute values

of the x-component of out-of-balance forces on the nodes along the top face of the bi-crystal.

Although not especially accurate, this can be used as an estimate of the applied stress by

dividing by the area (which in this case is the width 397.5 Å times the depth 2.85 Å). In a

4.10 Line 89: Writing a restart file 42

Applied Shear Strain

F
or

ce
(e

V
/Å

)

0 0.01 0.02 0.03 0.040

2

4

6

8

Figure 9: Applied force versus shear strain of the bicystal in this example.

displacement boundary condition problem like this example, there are no applied loads, and

instead several nodes are constrained to a certain displacement. However, this is equivalent

to applying a force to each of these nodes to exactly cancel out the nodal forces which arise

from the derivatives of the strain energy functional. Thus, an equivalent set of applied forces

can be determined from the out-of-balance forces on constrained nodes.

At the end of the simulation, the contents of the p-delta.pde file can be plotted as in

Fig. 9. Note the drop in the load at the critical displacement, at which point the step in the

grain boundary migrates.

More details about how to write the user pdel routine can be found in Section 2.11.3 of

the QC Reference Manual.

4.10 Line 89: Writing a restart file

The restart command with a write key will generate a restart file, with the name taken

from the data of the command line. In this case, the file will be named shear.res, based

on the file prefix shear provided in the command input and the .res default extension for

restart files. If a file shear.res already exists, it will be moved to a file shear LAST.res

before the new shear.res is written, effectively keeping up to two options for future restarts.

4.11 Line 90: Incrementing the time variable 43

Note that the file shear LAST.res will be overwritten if it already exists.

The restart files produced by this command are binary files that contains all of the

essential data to restore a QC simulation from where it was at the time the file was written,

and can be read by another QC simulation using an appropriate restart,read command.

There is also an option to produce ASCII restart files if portability between platforms is

required.

More details are provided in Section 4.18 of the QC Reference Manual.

4.11 Line 90: Incrementing the time variable

The final command in the loop is to increment the time variable, which is achieved by a

call to the time command. If no key or data options are provided to the time command, it

simply performs the operation:

time=time+dt

More detail can be found in Section 4.25 of the QC Reference Manual.

4.12 Line 92: end

The end command simply signifies the end of the macros stage of the simulation.

5 Stage: stop

The final stage, stop, is executed at line 93. stop closes any open files and terminates the

simulation.

6 Other Important Features

A few important features of QC are not demonstrated by the example discussed above.

These are discussed in this section.

6.1 Models with Multiple, Unconnected Domains 44

6.1 Models with Multiple, Unconnected Domains

In some problems, such as nano-indentation, wear, or friction studies, it may be desirable to

build a model with separate domains that are brought into contact. The code is capable of

handling such models, with some limitations. The main caveat is that contact between such

regions will only be recognized reliably by the code between nonlocal portions of the grains

defining the contacting regions. Contact between two local regions or a local and nonlocal

region can only be made through an element, i.e. , within a single connected region.

The example provided in QC/Friction-example illustrates this capability by modeling

the collision between two small asperities on the surfaces of two separately meshed grains.

To produce such a model, it is necessary to assign each repatom in the initial mesh to a

region, numbered from one to the number of unique regions, nregion, in the model. By

default, it is assumed that there is one region containing all the repatoms unless the user

specifies otherwise in subroutine user mesh. See Section 2.11.1 of the QC Reference Manual

for more details on this feature.

6.2 Generating Multiple Plots in a Single Output File

The plot command in the example described above produces a series of sequentially num-

bered files, each containing the plot for a different load step. It is sometimes more convenient

to put all of these plots in a single file, an option which is available in QC. See Section 4.14

of the QC Reference Manual for details of this option.

7 Other Examples

In this tutorial, the specific example of shearing a bi-crystal (found in QC/Code/GB-example)

was discussed in detail. The following other examples are provided with the QC program.

7.1 Nano-Indentation of an Aluminum Single Crystal by a Square Punch 45

25A

(111) SLIP PLANE

2000 A

1000 A

P

[111]

[112]

[110]

9.3

Figure 10: Schematic representation of the nanoindentation model for indentation into a
(1̄10) plane.

7.1 Nano-Indentation of an Aluminum Single Crystal by a Square

Punch

This example, found in directory QC/Punch-example, simulates nanoindentation into single

crystal aluminum. The aluminum is modeled using the Ercolessi-Adams EAM potential. A

rigid knife-like flat indenter, 9.31 Å wide, is driven down into the (1̄10) surface of the crystal.

The x-axis direction is the [111] direction and the out-of-plane direction is the [1̄1̄2] direction

(see Fig. 10). Perfect stick conditions between the indenter and crystal are assumed. The

results of this simulation have been reported in [10].

As in the grain boundary example of directory QC/GB-example, the meshing routine

initially generates a uniform mesh. An active grain boundary segment is defined in the grain

geometry file punch.geo along the line where the indenter will be applied. The active segment

is defined to be a little larger than the indenter (24 Å) to allow for surface relaxation effects

in the vicinity of the indenter. A status command at the start of the macros stage forces

the region in the vicinity of the active segment to be fully refined down to the atomic scale.

The solution algorithm is straightforward:

7.1 Nano-Indentation of an Aluminum Single Crystal by a Square Punch 46

1. Relax out surface effects of the initial model:

loop,,50
tang
solve,nr,1.0,10000,1
status,update
convergence,force

next

2. Increment the time and apply boundary conditions: all nodes on the surface in con-
tact with the indenter are moved down to a position time below their reference y-
coordinates.

time
bcon

3. Relax the model given the new BC’s.

loop,,200
tang
solve,nr,1.0,10000,1
status,update
convergence,force

next

4. Adapt the mesh to allow for defect nucleation and defect motion. There are two

important points regarding this adaption step:

(a) It is normally important to do the relaxation step in (3) before calling mesh

adaption. If the model is not relaxed there may be large non-physical gradients

in certain areas of the model which will drive adaption where it is not needed.

(b) The status command called before the adaption step is important. During the

relaxation loop in (3) the command status,update is repeatedly called to check

whether the auxiliary lists are still up-to-date. If they are not, a status calcu-

lation is triggered. In practice this triggering often occurs due to an anomalous

relaxation step which takes the model far from the relaxed configuration. The re-

sult may be the creation of a new non-physical nonlocal region in some portion of

the model at the end of the relaxation step. By calling status after the relaxation,

anomalous nonlocal regions will become local again and will not drive adaption.

7.1 Nano-Indentation of an Aluminum Single Crystal by a Square Punch 47

Indentation Depth [A]

F
or

ce
/u

ni
tt

hi
ck

ne
ss

[e
V

/A
2]

0 1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

Figure 11: The force per unit thickness in the out-of-plane direction versus indentation depth
for the nanoindentation simulation. The force per unit thickness is obtained by dividing the
total force on the indenter given in the pde file by the repeat distance in the out-of-plane
direction of the crystal structure (4.938Å for this model).

The adaption command itself is called with coarsening activated so such regions,

if they exist, will be coarsened out.

status
adapt,,0.075,1

5. Relax adapted model.

loop,,200
tang
solve,nr,1.0,10000,1
status,update
convergence,force

next

6. Generate output and return to (2) for the next load step.

pdelta,,punch
plot,disp,punch,1,1.,1.

This algorithm is run for 30 load steps. At the 26th load step a dissociated edge disloca-

tion is nucleated from the right indenter tip and at the 27th load step a second dissociated

edge dislocation is nucleated from the left indenter tip7. The load versus indentation depth

7Note: the load step at which nucleations occur and even the order of nucleation (left vs. right) can
depend on the platform that the code is run on due to nonlinearity and chaos effects in the solution. The
results quoted above were obtained on an SGI Origin 200 machine running MIPSpro 7 Fortran 90.

7.1 Nano-Indentation of an Aluminum Single Crystal by a Square Punch 48

[111] A

[-
11

0]
A

-40 -20 0 20 40-60

-50

-40

-30

-20

-10

0

10

[111] A

[-
11

0]
A

-40 -20 0 20 40-60

-50

-40

-30

-20

-10

0

10

[111] A

[-
11

0]
A

-40 -20 0 20 40-60

-50

-40

-30

-20

-10

0

10

(a) (b) (c)

[111] A

[-
11

0]
A

-40 -20 0 20 40-60

-50

-40

-30

-20

-10

0

10

[111] A

[-
11

0]
A

-40 -20 0 20 40-60

-50

-40

-30

-20

-10

0

10

[111] A

[-
11

0]
A

-40 -20 0 20 40-60

-50

-40

-30

-20

-10

0

10

(d) (e) (f)

Figure 12: Three snapshots of the mesh under the indenter (a) immediately before the first
emission (punch D025.plt), (b) after the emission of dissociated dislocation from the right
indenter tip (punch D026.plt) and (c) after emission of dissociated dislocations from both
ends of the indenter (punch D027.plt). Frames (d), (e) and (f) show the corresponding UZ

contour plots.

curve for this simulation is plotted in Fig. 11. The sudden drop in the load at the instant of

dislocation nucleation is clearly visible. The nucleated dislocations are most easily seen by

plotting the displacement plots with UZ contours displayed (see Fig. 12). The out-of-plane

displacements in the stacking fault regions between the partials are a clear fingerprint of the

location of the dislocations.

It is important to point out that the adaption in this simulation is insufficient to obtain

unconstrained values for the nucleation load. The location of the local/nonlocal boundary

remains too close to the indenter in this case and may retard the nucleation event. It is

definitely insufficient to track the motion of the dislocations into the bulk after nucleation.

The dislocations will move down and be trapped by the local/nonlocal boundary. A more

7.1 Nano-Indentation of an Aluminum Single Crystal by a Square Punch 49

rigorous approach is to carry out several relaxation/adaption steps within a single load step

to create sufficient meshing for a nucleation event to occur if it needs to and then to allow the

defect to move away. One way to do this is to loop until adaption creates no new elements:

% Relaxation - Adaption Loop
loop,relax,100

% Relax
loop,,200

tang
solve,nr,1.0,10000,1
status,update
convergence,force

next

% Adapt
status
adapt,,0.075,1

conv,elements

next,relax

The conv,element command will terminate the loop when no new elements have been

generated since the previous convergence check. The above code will prevent boundary ef-

fects on nucleation, but may significantly slow the simulation. This is particularly true if

the nucleated defect needs to travel a large distance into the bulk to reach its equilibrium

distance. In many cases sufficient accuracy may be obtained by performing a limited re-

laxation/adaption loop to allow the defects to nucleate unimpeded but not to follow their

motion into the bulk.

A limitation of the current QC code is that fully-refined slip traces are left in the wake

of dislocations. This means that as a dislocation moves away from its nucleation site the

number of elements in the mesh is greatly increased and execution is slowed. Mesh coarsening

will not remove these slip traces in the current implementation. A future revision where this

limitation will be addressed is planned.

To run the nanoindentation example do the following:

% cd ~/QC/Punch-example

7.2 Shearing Contact Between Two Nano-Asperities 50

% make QCCOMPILER=COMP

% cd Indent

% ../punch < punch_indent.in > punch_indent.out &

The complete run takes about 30 minutes on an SGI Altix with the Intel compiler.

7.2 Shearing Contact Between Two Nano-Asperities

As mentioned in Section 6.1, the directory QC/Friction-example is the shearing of two

nano-asperities across one another. The example illustrates the use of multiple, separate

meshed regions, in this case one for each of the two crystals coming into contact.

The solution algorithm is straightforward, simply moving the upper grain relative to the

lower grain in increments of 0.2 Å and holding the upper edge of the upper crystal and the

lower edge of the lower crystal fixed to this displacement during relaxation. The problem

runs in about two and a half hours on an SGI Altix computer and produces a series of 200

load steps and the lateral force vs. displacement curve. This example also demonstrates the

feature of writing multiple outputs to a single file, rather than a separate file for each load

step, as mentioned in Section 6.2. The displacement plot after each load step is appended

to a single file called shear-relaxed D003.plt

To run the friction example do the following:

% cd ~/QC/Friction-example

% make QCCOMPILER=COMP

% cd Shear

% ../fric < fric_shear.in > fric_shear.out &

A Working with the QC Makefiles

The makefile architecture of QC helps the user to compile the QC code. It requires GNU

Make, which should be available on all machines.8 On certain installations, GNU Make is

8For the benefit of older machines that may not have GNU Make installed by default (e.g. SGI Origin
200), we also supply the old-style make files used in previous versions of the code in directories OldMakes

A Working with the QC Makefiles 51

run by gmake and not ⁀make.

Typing make in an application directory (e.g. GB-Example), causes the main code in

directory Code to be compiled along with the application-specific file in the application

directory (user gb.f in GB-Example). Dependencies are automatically determined using

the Perl script Code/sfmakedepend9 , which is supplied with the code. If some source files

change, only the necessary files are recompiled. No further user interaction is required for

this. The uptodate dependency list is stored in files called fortran.d in both the Code

and application directory. These should not be deleted. Perl is freely available for most

architectures.10 In case you do not have (or do not want) Perl, the necessary fortran.d

files are supplied with the distribution. These will work as long as you do not change the

dependencies between the QC files.

Each application directory has a single file called Makefile which is executed by the make

command. This is a very short file that is easy to adapt to new applications. For example,

for the GB-example the Makefile contains:

GB-Example Makefile

SRC_FREE =
SRC_FIXED = user_gb.f
EXECUTABLES = gb
LIBRARIES =
CODEPATH = ../Code
QCPOTEN = eam

include $(CODEPATH)/Makefile_common

The first line is a comment. The variables SRC FREE and SRC FIXED refer to Fortran 90 free

format and Fortran 77 fixed format. The application file (user gb.f in this case) should

placed in the application and Code directories. To use these make files, copy them into the parent directory
containing each OldMakes directory. The compilation command is then, make -f makeAPP.COMP, which
should be executed in the application directory. Here APP is a particular application (e.g. gb) and COMP is
the compiler. For a list of currently supported compilers see Section 1.2.

9sfmakedepend is a freeware script generously provided by Kate Hedstrom at the Arctic Region Super-
computing Center. It can be downloaded at http://people.arsc.edu/∼kate/Perl/

10Perl may be obtained at www.perl.com. The sfmakedepend script requires version 5.6.0 or higher of
Perl. If you have an older version, install the latest version in a new directory and change the first line of
sfmakedepend to point to it. Note that sometimes (e.g. on Sun systems) the default version of Perl is an old
one, but a newer version is installed elsewhere. Likely places to look are /usr/local/perl and /opt/perl.

A Working with the QC Makefiles 52

be placed in one or the other based on its format. The next variable EXECUTABLES contains

the name of the executable that will be generated by make (gb in this case). LIBRARIES

will normally be left blank. CODEPATH contains the path to the directory containing the QC

code. If the directory structure described in Section 1.2 is adopted, this will be ../Code for

all applications. QCPOTEN refers to the inter-atomic potential to be used. This is explained

below. The last line links in the main QC make file Makefile common that performs most

of the work. This file is located in the Code directory. It will not need to be modified for

most applications unless a new compiler or potential are being added as described below. A

third make file called Makefile also located in the Code directory contains a list of the QC

files. It should not be modified.

The calling format for the make statement is

% make [QCCOMPILER=COMP] [QCPOTEN=POT] [QCDEBUG=1]

The optional compilation variables following the make statement are explained below.

A.1 Specifying the compiler

The compiler can be specified by setting the environment variable QCCOMPILER:

• for csh/tcsh: % setenv QCCOMPILER COMP

• for sh/bash: % export QCCOMPILER=COMP

or calling make with a compiler specification:

% make QCCOMPILER=COMP

where COMP is replaced by the appropriate compiler. See Section 1.2 for a list of compilers

currently supported by QC. The default is the intel compiler. This can be changed in

Code/Makefile common. Other compilers can be used by adding an appropriate section to

Code/Makefile common of the following form:

A Working with the QC Makefiles 53

ifeq ($(QCCOMPILER),ibm)
FC = xlf90
FFLAGS = -I../Code
FFLAGS_FREE = -qfree=f90
FFLAGS_FIXED = -qfixed
FFLAGS_OPT = -O2
MOD_NONSTANDARD = mod_nonstandard_ibmxlf.f
LDFLAGS =

else

and adding an additional endif to the end of the list. Here ibm is the compiler name (COMP)

that should be changed to that of the new compiler. FC is the system command used to

execute the compiler. In addition the following compiler-specific options must be defined:

• FFLAGS: Append the directory ../Code to the module files search path. (This assumes

the directory structure described in Section 1.1.) This is necessary for compiling the

user file in the application directory that depends on modules in Code. (Typically this

is -I../Code).

• FFLAGS FREE: Assume Fortran 90 free form.

• FFLAGS FIXED: Assume Fortran 77 fixed form.

• FFLAGS OPT: Non-aggressive optimization setting. Note that the aggressive optimiza-

tion offered by some compilers must be used with care since it does not guarantee the

correctness of the compiled code. (Typically this is -O2).

For some compilers it is necessary to specify a compiler-specific module mod nonstandard.

This module contains all of the non-standard Fortran extensions used by QC. Currently

there are two: flush for flushing output buffers and system for issuing operating system

commands from within a Fortran program. The names and calling formats for these routines

are the same for most Fortran compilers, however some either do not support one or both of

these options or have different names and/or calling formats.11 For these cases the generic

file mod nonstandard.f supplied with the QC code may be copied to a new name and

11These routines are not necessary for QC to function correctly.

A Working with the QC Makefiles 54

modified appropriately. The name of the new mod nonstandard file is then given by the

MOD NONSTANDARD variable in the compiler definition. If the compiler works with the generic

mod nonstandard.f file, this line may be removed. Finally, the variable LDFLAGS should

contain any additional libraries that must be available at link time. This may be required to

link to the nonstandard routines in mod nonstandard.f. (For example, the Absoft compiler

requires the library libU77.a for this, so LDFLAGS = -lU77).

A.2 Specifying the inter-atomic potential file

In similar fashion to the compiler specification, it is also possible to specify the inter-atomic

potential file that is to be compiled with the code by setting the environment variable

QCPOTEN:

• for csh/tcsh: % setenv QCPOTEN POT

• for sh/bash: % export QCPOTEN=POT

or calling make with a compiler specification:

% make QCPOTEN=POT

where POT is replaced by the potential file designator. Currently, there is only one option,

POT=eam for the EAM potential mod poten eam.f supplied with the distribution code. (See

Section 3.6 for details.) As noted above, the QCPOTEN variable is normally set in the applica-

tion Makefile. Over-riding this selection is possible in certain cases, but this should be done

with care since most applications will fail if the potential is switched to an incompatible one.

The QCPOTEN variable provides the user with the option of adding on new potentials and

selecting them in a convenient manner. New potentials can be used by adding an appropriate

section to Code/Makefile common of the following form:

ifeq ($(QCPOTEN),mypot)
MOD_POTEN = mod_poten_mypot.f

else

A Working with the QC Makefiles 55

and adding an additional endif to the end of the list. Here mypot is the new potential name

(POT) and mod poten mypot.f is the new potential file written by the user. At this point

there is no documentation on preparing new potentials except for the comments that appear

in mod poten eam.f.

A.3 Cleaning up

When changing to a new compiler or to a new potential, the user must

% make clean

which will remove all architecture and compiler-dependent files (the executables, library

(libmdlr.a), object files (with .o extension), and module files (with .mod extension). For

a more extensive cleanup that also includes *∼ files left by the emacs editor, do

% make veryclean

The make clean and make veryclean should be executed in the application directory. They

will remove the necessary files in both the application and Code directories.

To help the user remember to perform a clean when necessary, the current compiler and

potential are stored in the hidden files, .compiler and .poten, in the Code directory. If the

user changes compiler or potential without performing a make clean, an error message is

printed and make terminates.

A.4 Debugging applications

By default, code optimization is turned on and debug support is turned off. To change this,

use

% make QCDEBUG=1

or set the environment variable QCDEBUG to 1:

• for csh/tcsh: % setenv QCDEBUG 1

• for sh/bash: % export QCDEBUG=1

A Working with the QC Makefiles 56

References

[1] M. S. Daw and S. M. Foiles. Dynamo version 8.7. FORTRAN code, 1994.

[2] M.S. Daw and M.I. Baskes. Embedded-atom method: Derivation and application to

impurities, surfaces, and other defects in metals. Phys. Rev. B, 29:6443–6453, 1984.

[3] F. Ercolessi and J.B. Adams. Interatomic potentials from first-principles calculations –

the force-matching method. Europhys. Lett., 26:583, 1994.

[4] L. E. Malvern. Introduction to the Mechanics of a Continuous Medium. Prentice-Hall,

Englewood Cliffs, New Jersey, 1969.

[5] R. E. Miller. On the Generalization of Continuum Models to Include Atomistic Features.

PhD thesis, Brown University, 1997.

[6] D.N. Pawaskar, R. Miller, and R. Phillips. Structure and energetics of long-period tilt

grain boundaries using an effective hamiltonian. Phys. Rev. B, 63:214105–214118, 2001.

[7] J. D. Rittner and D. N. Seidman. < 110 > symmetric tilt grain-boundary structures in

fcc metals with low stacking-fault energies. Phys. Rev. B, 54(10):6999–7015, 1996.

[8] S. W. Sloan. A fast algorithm for generating constrained delaunay triangulations. Com-

puters and Structures, 47(3):441–450, 1992.

[9] E. B. Tadmor. The Quasicontinuum Method. PhD thesis, Brown University, 1996.

[10] E. B. Tadmor, R. Miller, R. Phillips, and M. Ortiz. Nanoindentation and incipient

plasticity. J. Mater. Res., 14(6):2233–2250, 1999.

[11] O. C. Zienkiewicz. The Finite Element Method, volume 1-2. McGraw-Hill, London, 4th

edition, 1991.

[12] J.A. Zimmerman, H. Gao, and F.F. Abraham. Generalized stacking fault energies for

embedded atom fcc metals. Modeling Simul. Mater. Sci. Eng., 8:103–115, 2000.

B QC Timing Study 57

B QC Timing Study

The QC program has been successfully compiled and run on a large number of computer

platforms and compilers. Below is a table of execution times of the GB-example described

in this tutorial. No attempt was made to optimize performance by tinkering with compiler

switches. In all cases, the codes were run with the standard optimization setting -O2. The

GB-example does not require much memory, so this factor most likely did not play a role in

the tests. All of the runs are on a single processor.

Computer Processor Compiler Time [s]
IBM BladeCenter H+ 2.6 GHz AMD Opteron 2218 Intel v9.1 179
IBM BladeCenter H+ 2.6 GHz AMD Opteron 2218 Pathscale v2.5 179
IBM BladeCenter H+ 2.6 GHz AMD Opteron 2218 Portland v6.2-5 207
Linux cluster 2.2 GHz AMD Opteron 275 Pathscale v2.5 213
Dell Precision 390 2.9 GHz Intel Core 2 X6800 Portland v6.0 241
Linux box 2.8 GHz Intel Pentium D NAG v4.1 304
Apple MacBook Pro 2.3 GHz Intel Core 2 Duo g95 v0.9 317
SGI Altix 350 1.5 GHz Intel Itanium Intel v9.0 378
Linux box 2.8 GHz Intel Pentium D gfortran v4.1.2 409
IBM Power4 System 1.7 GHz Power4 IBM XL 439
SGI Origin 200 225 MHz MIPS R10000 MIPSpro v7.3 1854
Compaq Proliant ML350 800 MHz Pentium III Absoft v3.0 1954

