Nonlinear mechanical response and rippling of thick multiwalled carbon nanotubes
M. Arroyo and T. Belytschko
Physical Review Letters, 45, 215505 (2003).

ABSTRACT

The measured drop of the effective bending stiffness of multiwalled carbon nanotubes (MWCNTs) with increasing diameter is investigated by a generalized local quasicontinuum method. The previous hypothesis that this reduction is due to a rippling mode is confirmed by the calculations. The observed ripples result from a complex three-dimensional deformation similar to the Yoshimura buckling pattern. It is found that thick MWCNTs exhibit a well-defined nonlinear moment-curvature relation, even for small deformations, governed by the interplay of strain energy relaxation and intertube interactions. Rippling deformations are also predicted for MWCNTs subject to torsion, resulting in an effective torsional modulus much smaller than that predicted by linear elasticity.