Goal-oriented adaptive mesh refinement for the quasicontinuum approximation of a Frenkel-Kontorova model
M. Arndt and M. Luskin
Computer Methods in Applied Mechanics and Engineering, 197, 4298–4306 (2008).


he quasicontinuum approximation [E.B. Tadmor, M. Ortiz, R. Phillips, Quasicontinuum analysis of defects in solids, Philos. Mag. A 73(6) (1996) 1529-1563] is a method to reduce the atomistic degrees of freedom of a crystalline solid by piecewise linear interpolation from representative atoms that are nodes for a finite element triangulation. In regions of the crystal with a highly nonuniform deformation such as around defects, every atom must be a representative atom to obtain sufficient accuracy, but the mesh can be coarsened away from such regions to remove atomistic degrees of freedom while retaining sufficient accuracy. We present an error estimator and a related adaptive mesh refinement algorithm for the quasicontinuum approximation of a generalized Frenkel-Kontorova model that enables a quantity of interest to be efficiently computed to a predetermined accuracy.